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Machine Learning/Al 1s becoming a backbone
of commerce, science, and soclety.
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The fog of war:
What 1s new and what 1s important?



Supervised ML

Input: data (x;,y;), i=1..n,x; € R% y; € {—1,1}

ML algorithm: f:R% - R, that “works” on new data.

Goal: find f* with smallest possible loss on the
unseen data:

>
fr= argmfin Eunseen data L(f(x)» Y)




ERM: Modern Supervised ML

(Algorithmic) Empirical risk minimization
(ERM) -- basis for nearly all algorithms:

Empirical risk

* = arg min —Z L(f,,(x;),v;)
/ gfwe}[ N &—dtraining data Jw (i), Vi

Typically SGD over w.



Classical U-shaped generalization curve
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However, a model with [zero training error|is overfit to the training

data and will typically generalize poorly.
Interpolation
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Generalization bounds

Basic (WYSIWYG) bounds:

VC-dim, fat shattering, Rademacher, covering numbers, margin..

Model or function complexity, e.g.,VC or || f |1

Expected risk: Empirical risk:
what you get what you see

ELG ) <= 9 LGy +0°( [

n

Empirical risk approximates expected risk for large n.



Does i1nterpolation overfit?

model #params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 yes 100.0 26.03
no no 100.0 835.75

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

But maybe test accuracy should be 100%?



Interpolation does not overfit even for
very noisy data

All methods (except Bayes optimal) have zero training square loss.
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[B., Ma, Mandal, I1CML 18]



Deep learning practice

Best practice for deep learning from Ruslan
Salakhutdinov’®s tutorial on deep learning (Simons Institute,
Berkeley, 2017):

The best way to solve the problem from
practical standpoint 1s you burld a very
birg system .. basically you want to make
sure you hit the zero training error.
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Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the
following issues:

m Why don’t heavily parameterized neural networks overfit the data?

Yann Lecun (I1PAM talk, 2018):

Deep learning breaks some basic rules of statistics.

It 1s time to resolve this i1ssue!



This talk

» Statistical theory of interpolation.
why (WYSIWYG) bounds do not apply + what analyses do apply.
Statistical validity of interpolation.

» The generalization landscape of Machine Learning.
Double Descent: reconciling interpolation and the classical U curve.
Occams razor: more features 1S better.

» Interpolation and optimization
Easy optimization + fast SGD (+ good generalization).



Basic bounds:

VC-dim, fat shattering, Rademacher, covering numbers, margin..

Model or function complexity, e.g.,VC or ||f |47

Expected risk Empirical risk
1
BUG W) <5 ) LUy +0°( [
n n
N
Interpolation

Can such bounds explain generalization?



Bounds?

What kind of generalization bound could work here?
(hopefully correct but nontrivial)
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Not a question of Improving bounds

correct nontrivial
c(n)
0.7< 0~ —1<0.9 n — oo

\ n

There are no bounds like this and no reason they
should exist.

A constant factor of 2 invalidates the bound!



Generalization theory for interpolation?

What theoretical analyses do we have?

VC-dimension/Rademacher complexity/covering/ gin bounds.

Cannot deal with interpolated classifiers en Bayes risk is non-zero.
Generalization gap cannot be bound w empirical risk iIs zero.
Regularization-type analyses ikhonov, early stopping/SGD, etc.)

Diverge as 41— 0 for fi

Algorithmic sta

Does not ply when empirical risk is zero, expected risk nonzero.

Classical smoothing methods (1.e., Nadaraya—-Watson).
Most classical analyses do not support interpolation.
But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])

WYSIWYG

bounds: o
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A way fTorward?

1-nearest neighbor classifier 1s very suggestive.

Interpolating classifier with a non-trivial (sharp!)
performance guarantee.

Twice the Bayes risk [Cover, Hart, 67].

» Analysis not based on complexity bounds.
» Estimating expected loss, not the generalization gap.



Simplicial interpolation

1. Triangulate.
2. Linearly interpolate

3. Threshold

[B.-, Hsu, Mitra, NeuriPS 18]



Nearly optimality of Sl

Theorem: (dimenSiOn d) (additional cond. to get exp).

1
E(L( SI)) — Bayes Risk < >a X Bayes Risk

Cf. classical bound for 1-NN:

E (L(lNN )) — Bayes Risk < |Bayes Risk

The blessing of dimensionality.

[B.-, Hsu, Mitra, NeuriPS 18]



Interpolated k-NN schemes

wiNN (log weights) N=50, k=20, y=x+n, n~N(0,0.2)
2 . . )

1

f(X) — Zyik(xi:x) il

Yk(xix) |

kCei,x) = s k(e x) = —logllx —xif|

(cf. Shepard’s interpolation) 02|
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Theorem:

Weighted (interpolated) k-nn schemes with certain singular kernels
are consistent (converge to Bayes optimal) for classification iIn
any dimension.

Moreover, statistically (minimax) optimal for regression in any
dimension.

[B., Hsu, Mitra, NeuriPS 18] [B., Rakhlin, Tsybakov, AlStats 19]



Interpolation and adversarial examples

From Szegedy, at al, ICLR 2014

Theorem: adversarial examples for i1nterpolated
classifiers are asymptotically dense (assuming the
labels are not deterministic).

[B., Hsu, Mitra, NeuriPS 18]



This talk

» Statistical theory of iInterpolation.
why (WYSIWYG) bounds do not apply + what analyses do apply.
Statistical validity of interpolation.

» The generalization landscape of Machine Learning.
Double Descent: reconciling interpolation and the classical U curve.
Occams razor: more features 1S better.

» Interpolation and optimization
Easy optimization + fast SGD (+ good generalization).



“Double descent” risk curve

Classical risk curve

New “double descent” risk curve

under-fitting : over-fitting

under-parameterized over-parameterized
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MMIST, Zero-one loss

MNIST (n=4-103% d=784,K=10)
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Error

More evidence:
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Theory of double descent: RFF networks

Data (x;,v;), i =1..n,x; € R%,y; € {-1,1}
Feature map ¢:R? - R", w; sampled iid from normal distribution in R%.
¢(x) — (ein(wl,x)’ . ein(wN,x))

Random Fourier Features (RFF) [Rahimi, Recht, NIPS 2007]
Followed by linear regression.

N .
han () = ) et

j=1

Neural network with one hidden layer, cos non-linearity, fixed first layer
weights. Hidden layer of size N.



What

97

75

Test (%)

TIMIT, Zero-one loss

Kernel machine loss

RFF Test loss

1 I
0 10

1 1 1
20 30 40

Kernel machine (RKHS) norm

jInterpolation
| threshold

I I
0 10

20 30 40
Number of features (x1000)

[
50

|
60

1S the mechanism?

N — oo --- infinite width neural net.

(Data size n is constant!)
Infinite net = kernel machine!

hpoo = argmingca nix)=y; ||~ |4

More features =

better approximation
to minimum norm solution



Is Infinite width optimal?

Infinite net (kernel machine) h,, Is near-optimal
empirically.

Suppose V; y; = h"(x;) for some h* € H (Gaussian RKHS).

Theorem (noiseless case):

* — 1/d *
|h*(X) = hpeo(X)| = AeBO/I8WTH x|,

1

va) for classical bras-variance

Compare to 0(
analyses.

[B.-, Hsu, Ma, Mandal, 18]



More (ReLU) features — more smoothness

—— 30 ReLU features, Norm=1642.1




Smoothness by averaging

SVHN (n = 10%, 10 classes)
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Double Descent In Linear Regression

Choosing maximum number of features is optimal under the

“weak random feature” model.
10

0 20 40 60 80 100
[B., Hsu, Xu, 19].

Related work: [Hastie, Montanari, Rosset, Tibshirani 19]
[Bartlett, Long, Lugosi, Tsigler 19]



Occams’s razor

Occam’s razor based on Inductive bias:

Choose the smoothest function subject to
interpolating the data.

Three ways to increase smoothness:

Explicit: minimum functional norm solutions
Exact: kernel machines.
Approximate: RFF, RelLU features.

Implicit: SGD/optimization (Neural networks)
Averaging (Bagging, L2-boost).

All coincide for kernel machines.



The landscape of generalization

4+ Classical Overfitting
Loss | wysiwya

bounds apply.

Modern ML. Interpolation
regime. Based on
inductive biases/functional
smoothness. First analyses
starting to appear.

Here be dragons.
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This talk

»Statistical theory of iInterpolation.
» Why (WYSIWYG) bounds do not apply + what analyses do apply.
» Statistical validity of interpolation.

»The generalization landscape of Machine Learning.
» Double Descent: reconciling interpolation and the classical U curve.
» Occams razor: more features 1s better.

> Interpolation and optimization
» Easy optimization + fast SGD (+ good generalization).



Optimization under interpolation

Classical (under-parametrized):

» Many local minima.
» SGD (fixed step size) does not converge.

Modern (interpolation).

» Every local minimum is global.

A lot of recent work. [Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17]
[Soltanolkotabi, et al, 17, 18] [Du, et al, 19] .

» Small batch SGD (fixed step size) converges as fast as GD.
[Ma, Bassily, B., ICML 18]



Why SGD?

1
w* = argmin L(w) = argmin— Z L;(w)
w w I

SGD ldea: optimize YL;(w), m at a time.

Error after t steps GD: et
SGD: 1/t

What is the
reason for
practical success!?

All major neural network optimization use SGD.

SGD 1s not simply noisy GD.



SGD under Interpolation

Key observation:
Interpolation

. fw(x1) =y
fwrx) =y = V;Li(w")=0 v '
implies exponential convergence
w. Fixed step size

Initialization

Target w”

fw(xz) = Y2



Exponential convergence of m-SGD

Convex loss function L (A-smooth, a-strongly convex),
L;(f-smooth).

Theorem [exponential convergence of m—-SGD 1In interpolation
regime]

A
E L(Weiq) < 5(1 —n*(m)a)t [lwy — w*||

m
f+A(m —1)

n*(m) =

[Ma, Bassily, B., ICML 18]

Related work (m =1): [Strohmer, Vershynin 09] [Moulines, Bach, 11] [Schmidt, Le Roux, 13]
[Needell, Srebro, Ward 14]



SGD 1s (much) faster than GD

Real data example. ;
' —*— m=1 —#- m =128

--B-- N = 8 -—®-- m = 256

(-
o
|

: *—q_ o m=16
e BTG

One step of SGD with mini-
batch m* = 8

mean squared error (train)

One step of GD.

1 2 5] 10

epochs (proportional to computations)

[Ma, Bassily, B., ICML 18]



The power of Interpolation

Optimization in modern deep learning:

overparametrization
interpolation
fast SGD

GPU -

SGDO(%) computational gain over GD

* GPU mmplementation ~100 over CPU.

n=10°m*=8: SGD on GPU ~107x faster than GD on CPU!



fast and effective kernel machines

Learning from deep learning:

EigenPro 2.0
Dataset S; Di . Our method ThunderSVM LibSVM
daltasc 17¢€ 1TMENnsSion (GPU) (GPU) [WSL+ 18] (CPU)
TIMIT 1-10° 440 15s 480 s 1.6 h
SVHN | 7-10% 1024 13s 142 s 3.8h
MNIST | 6-10* 784 6s 31s 9m
CIFAR-10 | 5-10? 1024 8s 121 s 3.4h
Smaller datasets take seconds.
No optimization parameters to select.
Code: https://github.com/EigenPro
[Ma, B., NIPS 17, SysML 19]



Important points

New phenomenon is interpolation, not over-
parametrization.

Classical methods, like kernels machines/splines are infinitely over-
parametrized. Over-parametrization enables interpolation but is not
sufficient.

Empirical loss is a useful optimization target, not a
meaningful statistic for the expected loss.

Optimization is qualitatively different under interpolation.
Every local minimum is global.
SGD is overwhelmingly faster than GD.

Many phenomena can be understood from linear regression.



From classical statistics to modern ML

A
Loss

Classical bounds apply.
Many local minima. |
SGD converges slowly.

Classical. Modern ML (interpolation regime).

I Generalization based on
functional smoothness.
Optimization is “easy”: every
local minimum is global.

SGD converges faster than GD.

A “modern” model: good generalization +
easy/efficient optimization

\

# parameters
>

Classical model.
Careful parameter
selection required.




Collaborators:

Siyuan Ma, Ohio State University
Soumik Mandal, Ohio State University

Daniel Hsu, Columbra University
Raef Bassily, Ohio State University
Partha Mitra, Spring Harbor Labs.
Sasha Rakhlin, MIT

Sasha Tsybakov, ENSAE

Thank you
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