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Machine Learning/AI is becoming a backbone 
of commerce, science, and society. 

The fog of war:

What is new and what is important?

GoogleLeNet, Szegedy, et al 2014.



Supervised ML

Input: data 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .𝑛𝑛 , 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 ,𝑦𝑦𝑖𝑖 ∈ −1,1

ML algorithm: 𝑓𝑓:ℝ𝑑𝑑 → ℝ, that “works” on new data.

Goal: find 𝑓𝑓∗ with smallest possible loss on the 
unseen data:

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓
𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

Statistical setting: 
True/expected risk



ERM: Modern Supervised ML

(Algorithmic) Empirical risk minimization 
(ERM) -- basis for nearly all algorithms: 

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓𝑤𝑤∈ℋ

1
𝑛𝑛�𝑑𝑑𝑟𝑟𝑑𝑑𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐿𝐿 𝑓𝑓𝑤𝑤(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖

Typically SGD over 𝑤𝑤.

Empirical risk



Classical U-shaped generalization curve

Overfitting

Goal:  “Sweet 
spot”

Underfitting

Page 194
Interpolation



Generalization bounds

Basic (WYSIWYG) bounds:
VC-dim, fat shattering, Rademacher, covering numbers, margin…

𝐸𝐸(𝐿𝐿(𝑓𝑓∗,𝑦𝑦)) ≤
1
𝑛𝑛�

𝐿𝐿 𝑓𝑓∗ 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗
𝑐𝑐
𝑛𝑛

Empirical risk approximates expected risk for large 𝑛𝑛.

Model or function complexity, e.g., VC or 𝑓𝑓 ℋ

Empirical risk: 
what you see

Expected risk: 
what you get



Does interpolation overfit?

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

But maybe test accuracy should be 100%?



Interpolation does not overfit even for 
very noisy data

Laplace kernel

Gauss kernel

Neural net

[B., Ma, Mandal, ICML 18] 

All methods (except Bayes optimal) have zero training square loss. 

Best possible
(Bayes optimal)



Deep learning practice

Best practice for deep learning from Ruslan
Salakhutdinov’s tutorial on  deep learning (Simons Institute, 
Berkeley, 2017): 

The best way to solve the problem from 
practical standpoint is you build a very 
big system … basically you want to make 
sure you hit the zero training error.



Written in 1995

Yann Lecun (IPAM talk, 2018): 

Deep learning breaks some basic rules of statistics.

It is time to resolve this issue!



This talk

 Statistical theory of interpolation.

 Why (WYSIWYG) bounds do not apply + what analyses do apply.

 Statistical validity of interpolation.

 The generalization landscape of Machine Learning.

 Double Descent: reconciling interpolation and the classical U curve.

 Occams razor: more features is better.

 Interpolation and optimization

 Easy optimization + fast SGD (+ good generalization).



Basic bounds:
VC-dim, fat shattering, Rademacher, covering numbers, margin…

Expected risk          Empirical risk

𝐸𝐸(𝐿𝐿(𝑓𝑓∗,𝑦𝑦)) ≤
1
𝑛𝑛�

𝐿𝐿 𝑓𝑓∗ 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗
𝑐𝑐
𝑛𝑛

Interpolation

Can such bounds explain generalization?

Model or function complexity, e.g., VC or 𝑓𝑓 ℋ



Bounds?

Best possible
Gauss kernel

Neural net

Zero training loss

Random

Laplace kernel

What kind of generalization bound could work here?
(hopefully correct but nontrivial)

0.7 < 𝑂𝑂∗ 𝑐𝑐(𝑢𝑢)
𝑢𝑢

< 0.9



Not a question of improving bounds

0.7 < 𝑂𝑂∗
𝑐𝑐(𝑛𝑛)
𝑛𝑛

< 0.9 𝑛𝑛 → ∞

There are no bounds like this and no reason they 
should exist.  

A constant factor of 2 invalidates the bound! 

correct nontrivial



Oracle bounds

expected loss 
≈ 

optimal loss

Generalization theory for interpolation?

 VC-dimension/Rademacher complexity/covering/margin bounds. 

 Cannot deal with interpolated classifiers when Bayes risk is non-zero. 

 Generalization gap cannot be bound when empirical risk is zero.

 Regularization-type analyses (Tikhonov, early stopping/SGD, etc.)

 Diverge as 𝜆𝜆 → 0 for fixed 𝑛𝑛.

 Algorithmic stability.

 Does not apply when empirical risk is zero, expected risk nonzero. 

 Classical smoothing methods (i.e., Nadaraya–Watson). 

 Most classical analyses do not support interpolation.

 But 1-NN!  (Also Hilbert regression Scheme, [Devroye, et al. 98]) 

WYSIWYG
bounds:

training loss 
≈ 

expected loss

What theoretical analyses do we have? 



A way forward?

1-nearest neighbor classifier is very suggestive.

Interpolating classifier with a non-trivial (sharp!) 
performance guarantee.

Twice the Bayes risk [Cover, Hart, 67].  

 Analysis not based on complexity bounds. 

 Estimating expected loss, not the generalization gap. 



Simplicial interpolation

1. Triangulate.

2. Linearly interpolate

3. Threshold

[B., Hsu, Mitra, NeuriPS 18]



Nearly optimality of SI

Theorem: (dimension 𝑑𝑑) (additional cond. to get exp).

𝐸𝐸 𝐿𝐿 𝑆𝑆𝑆𝑆 − 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝐵𝐵 𝑅𝑅𝑖𝑖𝐵𝐵𝑅𝑅 <
1

2𝑑𝑑
× 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝐵𝐵 𝑅𝑅𝑖𝑖𝐵𝐵𝑅𝑅

Cf. classical bound for 1-NN:

𝐸𝐸 𝐿𝐿 1𝑁𝑁𝑁𝑁 − 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝐵𝐵 𝑅𝑅𝑖𝑖𝐵𝐵𝑅𝑅 < 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝐵𝐵 𝑅𝑅𝑖𝑖𝐵𝐵𝑅𝑅

The blessing of dimensionality.

[B., Hsu, Mitra, NeuriPS 18]



Interpolated k-NN schemes

f 𝑥𝑥 = ∑ 𝑦𝑦𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖,𝑥𝑥)
∑𝑘𝑘 𝑥𝑥𝑖𝑖,𝑥𝑥

𝑅𝑅 𝑥𝑥𝑖𝑖 , 𝑥𝑥 = 1
||𝑥𝑥−𝑥𝑥𝑖𝑖||𝛼𝛼

, 𝑅𝑅 𝑥𝑥𝑖𝑖 , 𝑥𝑥 = − log ||𝑥𝑥 − 𝑥𝑥𝑖𝑖||

(cf. Shepard’s interpolation)

Theorem:

Weighted (interpolated) k-nn schemes  with certain singular kernels 
are consistent (converge  to Bayes optimal) for classification in 
any dimension.

Moreover, statistically (minimax)  optimal for regression in any
dimension.

[B., Hsu, Mitra, NeuriPS 18] [B., Rakhlin, Tsybakov, AIStats 19]



Theorem: adversarial examples for interpolated 
classifiers are asymptotically dense (assuming the 
labels are not deterministic).

From Szegedy, at al, ICLR 2014

Interpolation and adversarial examples

Ostrich
Dog

[B., Hsu, Mitra, NeuriPS 18] 

+ invisible noise



This talk

 Statistical theory of interpolation.

 Why (WYSIWYG) bounds do not apply + what analyses do apply.

 Statistical validity of interpolation.

 The generalization landscape of Machine Learning.

 Double Descent: reconciling interpolation and the classical U curve.

 Occams razor: more features is better.

 Interpolation and optimization

 Easy optimization + fast SGD (+ good generalization).



“Double descent” risk curve

Classical risk curve New “double descent” risk curve

[B., Hsu, Ma, Mandal, 18] 



Empirical evidence

Random ReLU
network 

Fully connected 
network 

Random Forest L2-boost

[B., Hsu, Ma, Mandal, 18] 

1D simulated data 1D simulated data

RFF network 



More evidence: neural networks

Spigler, et al, 2018Advani, Saxe, 2017



Theory of double descent: RFF networks

Data 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .𝑛𝑛 , 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 ,𝑦𝑦𝑖𝑖 ∈ −1,1

Feature map 𝜙𝜙:ℝ𝑑𝑑 → ℝ𝑁𝑁, 𝑤𝑤𝑗𝑗 sampled iid from normal distribution in ℝ𝑑𝑑.

𝜙𝜙 𝑥𝑥 = (𝐵𝐵𝑖𝑖𝑖𝑖 𝑤𝑤1,𝑥𝑥 , … , 𝐵𝐵𝑖𝑖𝑖𝑖 𝑤𝑤𝑁𝑁,𝑥𝑥 )

Random Fourier Features (RFF)  [Rahimi, Recht, NIPS 2007]

Followed by linear regression. 

ℎ𝑢𝑢,𝑁𝑁(𝑥𝑥) = �
𝑗𝑗=1

𝑁𝑁
𝛼𝛼𝑗𝑗 𝐵𝐵𝑖𝑖𝑖𝑖 𝑤𝑤𝑗𝑗,𝑥𝑥

Neural network with one hidden layer, 𝑐𝑐𝑐𝑐𝐵𝐵 non-linearity, fixed first layer 
weights. Hidden layer of size 𝑁𝑁. 



What is the mechanism?

Interpolation
threshold

Kernel machine loss

RFF Test loss
𝑁𝑁 → ∞ --- infinite width neural net.

(Data size 𝑛𝑛 is constant!)

Infinite net = kernel machine!

ℎ𝑢𝑢,∞ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛ℎ∈ℋ, ℎ 𝑥𝑥𝑖𝑖 =𝑦𝑦𝑖𝑖 ||ℎ||ℋ

More features ⇒
better approximation

to minimum norm solution

Number of features (x1000)

Kernel machine (RKHS) norm



Is infinite width optimal?

Infinite net (kernel machine) ℎ𝑢𝑢,∞ is near-optimal 
empirically.

Suppose ∀𝑖𝑖 𝑦𝑦𝑖𝑖 = ℎ∗ 𝑥𝑥𝑖𝑖 for some ℎ∗ ∈ ℋ (Gaussian RKHS).

Theorem (noiseless case): 

|ℎ∗(𝑥𝑥) − ℎ𝑢𝑢,∞(𝑥𝑥)| = 𝐴𝐴𝐵𝐵−𝐵𝐵 𝑢𝑢/ log 𝑢𝑢 1/𝑑𝑑 ||ℎ∗||ℋ

Compare to 𝑂𝑂 1
𝑢𝑢

for classical bias-variance 

analyses. 

[B., Hsu, Ma, Mandal, 18] 



More (ReLU) features – more smoothness



Smoothness by averaging

An average of 
interpolating trees is 
better than any individual 
tree. 

Cf. PERT [Cutler, Zhao 01]



Double Descent in Linear Regression

Choosing maximum number of features is optimal under the 
“weak random feature” model.

[B., Hsu, Xu, 19].  

Related work: [Hastie, Montanari, Rosset, Tibshirani 19]
[Bartlett, Long, Lugosi, Tsigler 19] 



Occams’s razor

Occam’s razor based on inductive bias:   

Choose the smoothest function subject to 
interpolating the data. 

Three ways to increase smoothness:

 Explicit: minimum functional norm solutions 

 Exact: kernel machines.

 Approximate: RFF, ReLU features. 

 Implicit: SGD/optimization (Neural networks)

 Averaging (Bagging, L2-boost).

All coincide for kernel machines.



Modern ML. Interpolation 
regime.  Based on 
inductive biases/functional 
smoothness. First analyses 
starting to appear.

# parameters

Loss
Overfitting
.

Test lossTrain loss

Classical 
WYSIWYG
bounds apply.

Here be dragons.

The landscape of generalization

Interpolation 
threshold



This talk

Statistical theory of interpolation.
 Why (WYSIWYG) bounds do not apply + what analyses do apply.
 Statistical validity of interpolation.

The generalization landscape of Machine Learning.
 Double Descent: reconciling interpolation and the classical U curve.
 Occams razor: more features is better.

Interpolation and optimization
 Easy optimization + fast SGD (+ good generalization).



Optimization under interpolation

Classical (under-parametrized):

 Many local minima. 

 SGD (fixed step size) does not converge.

Modern (interpolation).

 Every local minimum is global.

A lot of recent work. [Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17] 
[Soltanolkotabi, et al, 17, 18] [Du, et al, 19] …

 Small batch SGD (fixed step size) converges as fast as GD.

[Ma, Bassily, B., ICML 18]



Why SGD?

w∗ = argmin
w

𝐿𝐿(𝑤𝑤) = argmin
w

1
𝑛𝑛
�𝐿𝐿𝑖𝑖 𝑤𝑤

SGD Idea: optimize ∑𝐿𝐿𝑖𝑖 𝑤𝑤 , 𝑎𝑎 at a time.

Error after 𝑡𝑡 steps    GD:  𝐵𝐵−𝑑𝑑

SGD: 1/t

All major neural network optimization use SGD.

SGD is not simply noisy GD.

What is the 
reason for 

practical success?



SGD under interpolation

Initialization

Target 𝑤𝑤∗

𝑓𝑓𝑤𝑤 𝑥𝑥2 = 𝑦𝑦2

𝑓𝑓𝑤𝑤 𝑥𝑥1 = 𝑦𝑦1

Key observation: 
Interpolation 
𝑓𝑓𝑤𝑤∗ 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 ⇒ ∀𝑖𝑖 𝐿𝐿𝑖𝑖 𝑤𝑤∗ = 0
implies exponential convergence
w. fixed step size



Exponential convergence of m-SGD

Convex loss function 𝐿𝐿 (𝜆𝜆-smooth, 𝛼𝛼-strongly convex),
𝐿𝐿𝑖𝑖(𝛽𝛽-smooth).
Theorem [exponential convergence of 𝑎𝑎 –SGD in interpolation 
regime]

𝐸𝐸 𝐿𝐿 𝑤𝑤𝑑𝑑+1 ≤
𝜆𝜆
2

1 − 𝜂𝜂∗ 𝑎𝑎 𝛼𝛼 𝑑𝑑 ||𝑤𝑤1 − 𝑤𝑤∗||

𝜂𝜂∗ 𝑎𝑎 =
𝑎𝑎

𝛽𝛽 + 𝜆𝜆(𝑎𝑎 − 1)

[Ma, Bassily, B., ICML 18]

Related work (𝑎𝑎 = 1): [Strohmer, Vershynin 09] [Moulines, Bach, 11] [Schmidt, Le Roux, 13] 
[Needell, Srebro, Ward 14]



SGD is (much) faster than GD

𝑎𝑎∗ = 8

Real data example. 

One step of SGD with mini-
batch 𝑎𝑎∗ ≈ 8

=
One step of GD.

[Ma, Bassily, B., ICML 18]



The power of interpolation

Optimization in modern deep learning:

overparametrization

interpolation

fast SGD

GPU

SGD 𝑂𝑂 𝑢𝑢
𝑚𝑚∗ computational gain over GD 

* GPU implementation ~100 over CPU.

𝑛𝑛 = 106,𝑎𝑎∗ = 8: SGD on GPU ~107x faster than GD on CPU!



Learning from deep learning: 
fast and effective kernel machines

Smaller datasets take seconds. 
No optimization parameters to select.

Code: https://github.com/EigenPro

EigenPro 2.0

[Ma, B., NIPS 17, SysML 19]



 New phenomenon is interpolation, not over-
parametrization.

 Classical methods, like kernels machines/splines are infinitely over-
parametrized. Over-parametrization enables interpolation but is not 
sufficient. 

 Empirical loss is a useful optimization target, not a 
meaningful statistic for the expected loss.

 Optimization is qualitatively different under interpolation.
 Every local minimum is global.
 SGD is overwhelmingly faster than GD.
 Many phenomena can be understood from linear regression.

Important points



# parameters

Loss
Generalization based on 
functional smoothness.
Optimization is “easy”: every 
local minimum is global. 
SGD converges faster than GD. 

Classical.

A “modern” model:  good generalization + 
easy/efficient optimization

From classical statistics to modern ML

Classical bounds apply. 
Many local minima. 
SGD converges slowly.

Modern ML (interpolation regime).

Classical model. 
Careful parameter 
selection required. 



Siyuan Ma, Ohio State University
Soumik Mandal, Ohio State University

Daniel Hsu, Columbia University
Raef Bassily, Ohio State University
Partha Mitra, Spring Harbor Labs.
Sasha Rakhlin, MIT
Sasha Tsybakov, ENSAE

Collaborators:

Thank you
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