Rethinking over-fitting and the bias-variance trade-off

Mikhail Belkin
Ohio State University,
Department of Computer Science and Engineering,
Department of Statistics

OpenAI
July 2019
Machine Learning/AI is becoming a backbone of commerce, science, and society.

The fog of war: What is new and what is important?
Supervised ML

Input: data \((x_i, y_i), i = 1..n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\)

ML algorithm \(f: \mathbb{R}^d \rightarrow \mathbb{R}\), that “works” on new data.

Goal: find \(f^*\) with smallest possible loss on the unseen data:

\[
f^* = \arg\min_{f} E_{\text{unseen data}} L(f(x), y)
\]

Statistical setting: True/expected risk
(Algorithmic) Empirical risk minimization (ERM) -- basis for nearly all algorithms:

\[f^* = \text{arg min}_{f_w \in \mathcal{H}} \frac{1}{n} \sum_{\text{training data}} L(f_w(x_i), y_i) \]

Typically SGD over \(w \).
Classical U-shaped generalization curve

However, a model with zero training error is overfit to the training data and will typically generalize poorly.

Page 194
Generalization bounds

Basic (WYSIYG) bounds:
VC-dim, fat shattering, Rademacher, covering numbers, margin...

\[E(L(f^*, y)) \leq \frac{1}{n} \sum L(f^*(x_i), y_i) + O^*(\sqrt{\frac{c}{n}}) \]

Expected risk: what you get
Empirical risk: what you see

Empirical risk approximates expected risk for large \(n \).

Model or function complexity, e.g., VC or \(\|f\|_\mathcal{H} \)
Does interpolation overfit?

<table>
<thead>
<tr>
<th>model</th>
<th># params</th>
<th>random crop</th>
<th>weight decay</th>
<th>train accuracy</th>
<th>test accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception</td>
<td>1,649,402</td>
<td>yes</td>
<td>yes</td>
<td>100.0</td>
<td>89.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
<td>100.0</td>
<td>89.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>yes</td>
<td>100.0</td>
<td>86.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
<td>100.0</td>
<td>85.75</td>
</tr>
</tbody>
</table>

[CIAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al., 2017]

But maybe test accuracy should be 100%
Interpolation does not overfit even for very noisy data

All methods (except Bayes optimal) have zero training square loss.

[B., Ma, Mandal, ICML 18]
Best practice for deep learning from Ruslan Salakhutdinov’s tutorial on deep learning (Simons Institute, Berkeley, 2017):

The best way to solve the problem from practical standpoint is you build a very big system... basically you want to make sure you hit the zero training error.
Yann Lecun (IPAM talk, 2018):

Deep learning breaks some basic rules of statistics.

It is time to resolve this issue!
This talk

- Statistical theory of interpolation.
 - Why (WYSIWYG) bounds do not apply + what analyses do apply.
 - Statistical validity of interpolation.

- The generalization landscape of Machine Learning.
 - Double Descent: reconciling interpolation and the classical U curve.
 - Occam’s razor: more features is better.

- Interpolation and optimization
 - Easy optimization + fast SGD (+ good generalization).
Basic bounds:
VC-dim, fat shattering, Rademacher, covering numbers, margin...

Expected risk

\[E(L(f^*, y)) \leq \frac{1}{n} \sum L(f^*(x_i), y_i) + O^* \left(\sqrt{\frac{c}{n}} \right) \]

Empirical risk

Interpolation

Can such bounds explain generalization?
What kind of generalization bound could work here? (Hopefully correct but nontrivial)

$$0.7 < O^* \left(\frac{\sqrt{c(n)}}{n} \right) < 0.9$$
Not a question of improving bounds

\[0.7 < O^* \left(\sqrt{\frac{c(n)}{n}} \right) < 0.9 \quad n \to \infty \]

There are no bounds like this and no reason they should exist.

A constant factor of 2 invalidates the bound!
Generalization theory for interpolation?

What theoretical analyses do we have?

- VC-dimension/Rademacher complexity/covering/margin bounds.
 - Cannot deal with interpolated classifiers when Bayes risk is non-zero.
 - Generalization gap cannot be bound when empirical risk is zero.

- Regularization-type analyses (Tikhonov, early stopping/SGD, etc.)
 - Diverge as $\lambda \to 0$ for fixed n.

- Algorithmic stability.
 - Does not apply when empirical risk is zero, expected risk nonzero.

- Classical smoothing methods (i.e., Nadaraya–Watson).
 - Most classical analyses do not support interpolation.
 - But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])
A way forward?

1-nearest neighbor classifier is very suggestive.

Interpolating classifier with a non-trivial (sharp!) performance guarantee.

Twice the Bayes risk [Cover, Hart, 67].

- Analysis not based on complexity bounds.
- Estimating expected loss, not the generalization gap.
Simplicial interpolation

1. Triangulate.
2. Linearly interpolate.
3. Threshold.

[B., Hsu, Mitra, NeurIPS 18]
Nearly optimality of SI

Theorem (dimension d) (additional cond. to get exp).

$$E(L(SI)) - \text{Bayes Risk} < \frac{1}{2^d} \times \text{Bayes Risk}$$

Cf. classical bound for 1-NN:

$$E(L(1_{NN})) - \text{Bayes Risk} < \text{Bayes Risk}$$

The blessing of dimensionality.

[B., Hsu, Mitra, NeuriPS 18]
Interpolated k-NN schemes

\[f(x) = \frac{\sum y_i k(x_i, x)}{\sum k(x_i, x)} \]

\[k(x_i, x) = \frac{1}{||x - x_i||^\alpha}, \quad k(x_i, x) = -\log ||x - x_i|| \]

(cf. Shepard's interpolation)

Theorem

Weighted (interpolated) k-nn schemes with certain singular kernels are consistent (converge to Bayes optimal) for classification in any dimension.

Moreover, statistically (minimax) optimal for regression in any dimension.

[B., Hsu, Mitra, NeurIPS 18] [B., Rakhlin, Tsybakov, AIStats 19]
Theorem: adversarial examples for interpolated classifiers are asymptotically dense (assuming the labels are not deterministic).

[B., Hsu, Mitra, NeurIPS 18]
This talk

- **Statistical theory of interpolation.**
 - Why (WYSIWYG) bounds do not apply + what analyses do apply.
 - Statistical validity of interpolation.

- **The generalization landscape of Machine Learning.**
 - Double Descent: reconciling interpolation and the classical U curve.
 - Occam's razor: more features is better.

- **Interpolation and optimization**
 - Easy optimization + fast SGD (+ good generalization).
"Double descent" risk curve

Classical risk curve

[B., Hsu, Ma, Mandal, 18]
Empirical evidence

- Random ReLU network
- Fully connected network
- Random Forest
- L2-boost

TIMIT, Zero-one loss

- RFF network

1D simulated data

- Mean squared error vs. number of parameters
 - SNR = ∞
 - SNR = 20

[B., Hsu, Ma, Mandal, 18]
More evidence: neural networks

Advani, Saxe, 2017

Spigler, et al, 2018
Theory of double descent: RFF networks

Data \((x_i, y_i), i = 1..n, x_i \in \mathbb{R}^d, y_i \in \{-1,1\}\)

Feature map \(\phi: \mathbb{R}^d \rightarrow \mathbb{R}^N\), \(w_j\) sampled iid from normal distribution in \(\mathbb{R}^d\).

\[
\phi(x) = (e^{i\pi\langle w_1, x \rangle}, ..., e^{i\pi\langle w_N, x \rangle})
\]

Random Fourier Features (RFF) [Rahimi, Recht, NIPS 2007]
Followed by linear regression.

\[
h_{n,N}(x) = \sum_{j=1}^{N} \alpha_j e^{i\pi\langle w_j, x \rangle}
\]

Neural network with one hidden layer, \(\cos\) non-linearity, fixed first layer weights. Hidden layer of size \(N\).
What is the mechanism?

\[N \to \infty \quad \text{--- infinite width neural net.} \]

(Data size \(n \) is constant!)

Infinite net = kernel machine!

\[h_{n,\infty} = \text{argmin}_{h \in \mathcal{H}, h(x_i) = y_i} \| h \|_{\mathcal{H}} \]

More features \Rightarrow better approximation to minimum norm solution
Is infinite width optimal?

Infinite net (kernel machine) $h_{n,\infty}$ is near-optimal empirically.

Suppose $\forall i \ y_i = h^*(x_i)$ for some $h^* \in \mathcal{H}$ (Gaussian RKHS).

Theorem (noiseless case):

$$|h^*(x) - h_{n,\infty}(x)| = Ae^{-B(n/\log n)^{1/d}} \|h^*\|_{\mathcal{H}}$$

Compare to $O\left(\frac{1}{\sqrt{n}}\right)$ for classical bias-variance analyses.

[B., Hsu, Ma, Mandal, 18]
More (ReLU) features - more smoothness
Smoothness by averaging

An average of interpolating trees is better than any individual tree.

Cf. PERT [Cutler, Zhao 01]
Double Descent in Linear Regression

Choosing maximum number of features is optimal under the "weak random feature" model.

[B., Hsu, Xu, 19].

Related work: [Hastie, Montanari, Rosset, Tibshirani 19] [Bartlett, Long, Lugosi, Tsigler 19]
Occam’s razor based on inductive bias: Choose the smoothest function subject to interpolating the data.

Three ways to increase smoothness:

- **Explicit**: minimum functional norms solutions
 - Exact: kernel machines.
 - Approximate: RFF, ReLU features.
- **Implicit**: SGD/optimization (Neural networks)
- **Averaging**: (Bagging, L2-boost).

All coincide for kernel machines.

Here be dragons.
This talk

- **Statistical theory of interpolation.**
 - Why (WWSI WYG) bounds do not apply + what analyses do apply.
 - Statistical validity of interpolation.

- **The generalization landscape of Machine Learning.**
 - Double Descent: reconciling interpolation and the classical U curve.
 - Occam's razor: more features is better.

- **Interpolation and optimization**
 - Easy optimization + fast SGD (+ good generalization).
Optimization under interpolation

Classical (under-parametrized):

- Many local minima.
- SGD (fixed step size) does not converge.

Modern (interpolation):

- Every local minimum is global.

A lot of recent work. [Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17] [Soltanolkotabi, et al, 17, 18] [Du, et al, 19] ...

- Small batch SGD (fixed step size) converges as fast as GD. [Ma, Bassily, B., ICML 18]
Why SGD?

$$w^* = \arg \min_w L(w) = \arg \min_w \frac{1}{n} \sum L_i(w)$$

SGD Idea: optimize $\sum L_i(w)$, m at a time.

Error after t steps

GD: e^{-t}
SGD: $1/t$

All major neural network optimization use SGD.

SGD is not simply noisy GD.
Key Observation:

Interpolation

\[f_{w^*}(x_i) = y_i \Rightarrow \forall_i L_i(w^*) = 0 \]

implies exponential convergence

w. fixed step size
Exponential convergence of m-SGD

Convex loss function L (λ-smooth, α-strongly convex), $L_i(\beta$-smooth).

Theorem [exponential convergence of m-SGD in interpolation regime]

\[
E L(w_{t+1}) \leq \frac{\lambda}{2} (1 - \eta^*(m)\alpha)^t ||w_1 - w^*||
\]

\[
\eta^*(m) = \frac{m}{\beta + \lambda(m-1)}
\]

[Ma, Bassily, B., ICML 18]

Related work ($m=1$): [Strohmer, Vershynin 09] [Moulines, Bach, 11] [Schmidt, Le Roux, 13] [Needell, Srebro, Ward 14]
SGD is (much) faster than GD

Real data example.

One step of SGD with mini-batch $m^* \approx 8$

=

One step of GD.

[Ma, Bassily, B., ICML 18]
The power of interpolation

Optimization in modern deep learning:

overparametrization
interpolation
fast SGD
GPU

SGD $O\left(\frac{n}{m^*}\right)$ computational gain over GD
* GPU implementation ~ 100 over CPU.

$n = 10^6, m^* = 8$: SGD on GPU $\sim 10^7$ x faster than GD on CPU!
Learning from deep learning: fast and effective kernel machines

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Dimension</th>
<th>Our method (GPU)</th>
<th>ThunderSVM (GPU) [WSL+18]</th>
<th>LibSVM (CPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMIT</td>
<td>$1 \cdot 10^5$</td>
<td>440</td>
<td>15 s</td>
<td>480 s</td>
<td>1.6 h</td>
</tr>
<tr>
<td>SVHN</td>
<td>$7 \cdot 10^4$</td>
<td>1024</td>
<td>13 s</td>
<td>142 s</td>
<td>3.8 h</td>
</tr>
<tr>
<td>MNIST</td>
<td>$6 \cdot 10^4$</td>
<td>784</td>
<td>6 s</td>
<td>31 s</td>
<td>9 m</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>$5 \cdot 10^4$</td>
<td>1024</td>
<td>8 s</td>
<td>121 s</td>
<td>3.4 h</td>
</tr>
</tbody>
</table>

Smaller datasets take seconds.
No optimization parameters to select.

Code: https://github.com/EigenPro

[Ma, B., NIPS 17, SysML 19]
Important points

- New phenomenon is interpolation, not over-parametrization.
 - Classical methods, like kernels machines/splines are infinitely over-parametrized. Over-parametrization enables interpolation but is not sufficient.

- Empirical loss is a useful optimization target, not a meaningful statistic for the expected loss.

- Optimization is qualitatively different under interpolation.
 - Every local minimum is global.
 - SGD is overwhelmingly faster than GD.
 - Many phenomena can be understood from linear regression.
From classical statistics to modern ML

Classical.
- Classical bounds apply.
- Many local minima.
- SGD converges slowly.
- Classical model.
 Careful parameter selection required.

Modern ML (interpolation regime).
- Generalization based on functional smoothness.
- Optimization is “easy”: every local minimum is global.
- SGD converges faster than GD.
- A “modern” model: good generalization + easy/efficient optimization.
Collaborators:

Siyuan Ma, Ohio State University
Soumik Mandal, Ohio State University
Daniel Hsu, Columbia University
Raef Bassily, Ohio State University
Partha Mitra, Spring Harbor Labs.
Sasha Rakhlin, MIT
Sasha Tsybakov, ENSAE

Thank you