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Abstract
We discover a new set of empirical properties
of interpolating classifiers, including neural net-
works, kernel machines and decision trees. Infor-
mally, the output distribution of an interpolating
classifier matches the distribution of true labels,
when conditioned on certain subgroups of the in-
put space. For example, if we mislabel 30% of
images in the subgroup dogs as cats in the train
set of CIFAR-10, then a ResNet trained to interpo-
lation will in fact mislabel roughly 30% of dogs
as cats on the test set as well, while leaving other
classes unaffected. These behaviors are not cap-
tured by classical generalization, which would
only consider the average error over the inputs,
and not where these errors occur. We introduce
and experimentally validate a formal conjecture
that specifies the subgroups for which we expect
this distributional closeness. Further, we show
that these properties can be seen as a new form of
generalization, which advances our understanding
of the implicit bias of interpolating methods.

1. Introduction
In learning theory, when we study how well a classifier
“generalizes”, we usually consider a single metric – its test
error (Shalev-Shwartz & Ben-David, 2014). However, there
could be many different classifiers with the same test error
that differ substantially in, say, the subgroups of inputs on
which they make errors or in the features they use to attain
this performance. Reducing classifiers to a single number
misses these rich aspects of their behavior.

In this work, we propose formally studying the entire joint
distribution of classifier inputs and outputs. That is, the dis-
tribution (x, f(x)) for samples from the distribution x ∼ D
for a classifier f(x). This distribution reveals many struc-
tural properties of the classifier beyond test error (such as
where the errors occur). In fact, we discover new behav-
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iors of modern classifiers that can only be understood in
this framework. As an example, consider the following
experiment (Figure 1).

Experiment 1. Consider a binary classification version of
CIFAR-10, where CIFAR-10 images x have binary labels
Animal/Object. Take 50K samples from this distribu-
tion as a train set, but apply the following label noise: flip
the label of cats to Object with probability 30%. Now
train a WideResNet f to 0 train error on this train set. How
does the trained classifier behave on test samples? Options
below:

(1) The test error is low across all classes, since there is only
3% overall label noise in the train set.

(2) Test error is “spread” across the animal class. After all,
the classifier is not explicitly told what a cat or a dog is, just
that they are all animals.

(3) The classifier misclassifies roughly 30% of test cats as
“objects”, but all other animals are largely unaffected.

The reality is closest to option (3) as shown in Figure 1. The
left panel shows the joint density of train inputs x with train
labels Object/Animal. Since the classifier is interpolat-
ing, the classifier outputs on the train set are identical to the
left panel. The right panel shows the classifier predictions
f(x) on test inputs x.

There are several notable things about this experiment. First,
the error is localized to cats in the test set as it was in
the train set, even though no explicit cat labels were pro-
vided. The interpolating model is thus sensitive to subgroup-
structures in the distribution. Second, the amount of error
on the cat class is close to the noise applied on the train
set. Thus, the behavior of the classifier on the train set
generalizes to the test set in a stronger sense than just av-
erage error. Specifically, when conditioned on a subgroup
(cat), the distribution of the true labels is close to that of
the classifier outputs. Third, this is not the behavior of the
Bayes-optimal classifier, which would always output the
maximum-likelihood label instead of reproducing the noise
in the distribution. The network is thus behaving poorly
from the perspective of Bayes-optimality, but behaving well
in a certain distributional sense (which we will formalize
soon).

Now, consider a seemingly unrelated experimental obser-
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Figure 1. The setup and result of Experiment 1. The CIFAR-10 train set is labeled as either Animals or Objects, with label noise affecting
only cats. A WideResNet-28-10 is then trained to 0 train error on this train set, and evaluated on the test set. Full experimental details in
Appendix D.2

vation. Take an AlexNet trained on ImageNet, a 1000-way
classification problem with 116 varieties of dogs. AlexNet
only achieves 56.5% test accuracy on ImageNet. However,
it at least classifies most dogs as some variety of dog (with
98.4% accuracy), though it may mistake the exact breed.

In this work, we show that both of these experiments are
examples of the same underlying phenomenon. We empir-
ically show that for an interpolating classifier, its classifi-
cation outputs are close in distribution to the true labels —
even when conditioned on many subsets of the domain. For
example, in Figure 1, the distribution of p(f(x)|x = cat) is
close to the true label distribution of p(y|x = cat). We pro-
pose a formal conjecture (Feature Calibration), that predicts
which subgroups of the domain can be conditioned on for
the above distributional closeness to hold.

We emphasize that these experimental behaviors could not
have been captured solely by looking at average test error,
as is done in the classical theory of generalization. In fact,
they are special cases of a new kind of generalization, which
we call “Distributional Generalization”.

1.1. Distributional Generalization

Informally, Distributional Generalization states that the out-
puts of classifiers f on their train sets and test sets are close
as distributions (as opposed to close in just error). That is,
the following joint distributions1 are close:

(x, f(x))x∼TestSet ≈ (x, f(x))x∼TrainSet (1)

The remainder of this paper is devoted to making the above
statement precise, and empirically checking its validity on
real-world tasks. Specifically, we want to formally define the
notion of approximation (≈), and understand how it depends
on the problem parameters (the type of classifier, number
of train samples, etc). We focus primarily on interpolating
methods, where we formalize Equation (1) through our
Feature Calibration Conjecture.

1These distributions also include the randomness in sampling
the train and test sets, and in training the classifier, as we define
more precisely in Section 3.

1.2. Our Contributions and Organization

In this work, we discover new empirical properties of inter-
polating classifiers, which are not captured in the classical
framework of generalization. We then propose formal con-
jectures to characterize these behaviors.

• In Section 3, we introduce a formal “Feature Cali-
bration” conjecture, which unifies our experimental
observations. Roughly, Feature Calibration says that
the outputs of classifiers match the statistics of their
training distribution when conditioned on certain sub-
groups.

• In Section 4, we experimentally stress test our Fea-
ture Calibration conjecture across various settings in
machine learning, including neural networks, kernel
machines, and decision trees. This highlights the uni-
versality of our results across machine learning.

• In Section 5, we relate our results to classical gener-
alization, by defining a new notion of Distributional
Generalization which subsumes both classical general-
ization and our new conjectures.

• Finally, in Section 5.2 we informally discuss how Dis-
tributional Generalization can be applied even for non-
interpolating methods.

Our results, thus, extend our understanding of the implicit
bias of interpolating methods, and introduce a new type of
generalization exhibited across many methods in machine
learning.

1.3. Related Work and Significance

Our work has connections to, and implications for many ex-
isting research programs in deep learning, described below.

Implicit Bias and Overparameterization. There has been
a long line of recent work towards understanding overparam-
eterized and interpolating methods, since these pose chal-
lenges for classical theories of generalization (e.g. Zhang
et al. (2016); Belkin et al. (2018a;b; 2019); Liang & Rakhlin
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(2018); Nakkiran et al. (2020); Schapire et al. (1998);
Breiman (1995); Soudry et al. (2018); Gunasekar et al.
(2018)). The “implicit bias” program here aims to answer:
Among all models with 0 train error, which model is actually
produced by SGD? Most existing work seeks to characterize
the exact implicit bias of models under certain (sometimes
strong) assumptions on the model, training method or the
data distribution. In contrast, our conjecture applies across
many different interpolating models (from neural nets to
decision trees) as they would be used in practice, and thus
form a sort of “universal implicit bias” of these methods.
Moreover, our results place constraints on potential future
theories of implicit bias, and guide us towards theories that
better capture practice.

Benign Overfitting. Most prior works on interpolating clas-
sifiers attempt to explain why training to interpolation “does
not harm” the the model. This has been dubbed “benign
overfitting” (Bartlett et al., 2020) and “harmless interpola-
tion” (Muthukumar et al., 2020), reflecting the widely-held
belief that interpolation does not harm the decision boundary
of classifiers. In contrast, we find that interpolation actually
does “harm” classifiers, in predictable ways: fitting the label
noise on the train set causes similar noise to be reproduced
at test time. Our results thus indicate that interpolation can
significantly affect the decision boundary of classifiers, and
should not be considered a purely “benign” effect.

Classical Generalization and Scaling Limits. Our frame-
work of Distributional Generalization is insightful even to
study classical generalization, since it reveals much more
about models than just their test error. For example, sta-
tistical learning theory attempts to understand if and when
models will asymptotically converge to Bayes optimal classi-
fiers, in the limit of large data (“asymptotic consistency” e.g.
Shalev-Shwartz & Ben-David (2014); Wasserman (2013)).
In deep learning, there are at least two distinct ways to scale
model and data to infinity together: the underparameter-
ized scaling limit, where data-size � model-size always,
and the overparameterized scaling limit, where data-size�
model-size always. The underparameterized scaling limit
is well-understood: when data is essentially infinite, neural
networks will converge to the Bayes-optimal classifier (pro-
vided the model-size is large enough, and the optimization
is run for long enough, with enough noise to escape local
minima). On the other hand, our work suggests that in the
overparameterized scaling limit, models will not converge
to the Bayes-optimal classifier. Specifically, our Feature
Calibration Conjecture implies that in the limit of large
data, interpolating models will approach a sampler from
the distribution. That is, the limiting model f will be such
that the output f(x) is a sample from p(y|x), as opposed to
the Bayes-optimal f∗(x) = argmaxy p(y|x). This claim—
that overparameterized models do not converge to Bayes-
optimal classifiers— is unique to our work as far as we

know, and highlights the broad implications of our results.

Locality and Manifold Learning. Our intuition for the
behaviors in this work is that they arise due to some form
of “locality” of the trained classifiers, in an appropriate
embedding space. For example, the behavior observed
in Experiment 1 would be consistent with that of a 1-
Nearest-Neighbor classifier in a embedding that separates
the CIFAR-10 classes well. This intuition that classifiers
learn good embeddings is present in various forms in the lit-
erature, for example: the so-called called “manifold hypoth-
esis,” that natural data lie on a low-dimensional manifold
(e.g. Narayanan & Mitter (2010); Sharma & Kaplan (2020)),
as well as works on local stiffness of the loss landscape (Fort
et al., 2019), and works showing that overparameterized neu-
ral networks can learn hidden low-dimensional structure in
high-dimensional settings (Gerace et al., 2020; Bach, 2017;
Chizat & Bach, 2020). It is open to more formally under-
stand connections between our work and the above.

Other Related Works. Our conjectures also describe neu-
ral networks under label noise, which has been empirically
and theoretically studied in the past (Zhang et al., 2016;
Belkin et al., 2018b; Rolnick et al., 2017; Natarajan et al.,
2013; Thulasidasan et al., 2019; Ziyin et al., 2020; Chat-
terji & Long, 2020), though not formally characterized. We
include a full discussion of related works in Appendix B.

2. Preliminaries
Notation. We consider joint distributions D on x ∈ X and
discrete y ∈ Y = [k]. Let S = {(xi, yi)}ni=1 ∼ Dn denote
a train set of n iid samples fromD. LetA denote the training
procedure (including architecture and training algorithm for
neural networks), and let f ← TrainA(S) denote training a
classifier f on train-set S using procedure A. We consider
classifiers which output hard decisions f : X → Y . Let
NNS(x) = xi denote the nearest-neighbor to x in train-set
S, with respect to a distance metric d. Our theorems will
apply to any distance metric, and so we leave this unspec-
ified. Let NN

(y)
S (x) denote the nearest-neighbor estimator

itself, that is, NN
(y)
S (x) := yi where xi = NNS(x).

Experimental Setup. Briefly, we train all classifiers to in-
terpolation (to 0 train error). Neural networks (MLPs and
ResNets (He et al., 2016)) are trained with SGD. Interpo-
lating decision trees are trained using the growth rule from
Random Forests (Breiman, 2001). For kernel classification,
we consider kernel regression on one-hot labels and kernel
SVM, with small or 0 of regularization (which is often op-
timal Shankar et al. (2020)). Full experimental details are
provided in Appendix C.

Distributional Closeness. We consider the following no-
tion of closeness for two probability distributions: For two
distributions P,Q over X × Y , let a “test” (or “distin-
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guisher”) be a function T : X × Y → [0, 1] which accepts
a sample from either distribution, and is intended to classify
the sample as either from distribution P or Q. For any set
C ⊆ {T : X × Y → [0, 1]} of tests, we say distributions
P and Q are “ε-indistinguishable up to C-tests” if they are
close with respect to all tests in class C. That is,

P ≈Cε Q ⇐⇒

sup
T∈C

∣∣∣∣ E
(x,y)∼P

[T (x, y)]− E
(x,y)∼Q

[T (x, y)]

∣∣∣∣ ≤ ε (2)

This is known as an Integral Probability Metric (Müller,
1997) and is widely used as distance measure between distri-
butions. Total-Variation distance is equivalent to closeness
in all tests, i.e. C = {T : X ×Y → [0, 1]}, but we consider
closeness for restricted families of tests C. P ≈ε Q denotes
ε-closeness in TV-distance.

3. Feature Calibration Conjecture
We first define three key distributions that we will use in
stating our formal conjecture.

3.1. Distributions of Interest

For a given data distribution D over X × Y and training
procedure TrainA, we consider the following three distribu-
tions over X × Y:

1. Source D: (x, y) where x, y ∼ D.

2. Train Dtr: (xtr, f(xtr)) where S ∼ Dn, f ←
TrainA(S), (xtr, ytr) ∼ S

3. Test Dte: (x, f(x)) where S ∼ Dn, f ← TrainA(S),
x, y ∼ D

The Source Distribution D is simply the original distribu-
tion. To sample once from the Train Distribution Dtr, we
first sample a train set S ∼ Dn, train a classifier f on it,
then output (xtr, f(xtr)) for a random train point xtr. That
is, Dtr is the distribution of input and outputs of a trained
classifier f on its train set. To sample once from the Test
Distribution Dte, we do this same procedure, but output
(x, f(x)) for a random test point x. That is, the Dte is the
distribution of input and outputs of a trained classifier f at
test time. The only difference between the Train Distribu-
tion and Test Distribution is that the point x is sampled from
the train set or the test set, respectively.2 For interpolating
classifiers, f(xtr) = ytr on the train set, and so the Source
and Train distributions are equivalent: D ≡ Dtr. (Note

2Technically, these definitions require training a fresh classifier
for each sample, using independent train sets. For practical reasons
most of our experiments train a single classifier f and evaluate it
on the entire train/test set.

that these definitions, crucially, involve randomness from
sampling the train set, training the classifier, and sampling a
test point).

3.2. Feature Calibration

We now formally describe the Feature Calibration Conjec-
ture. At a high level, we argue that the distributions Dte and
D are statistically close for interpolating classifiers if we first
“coarsen” the domain of x by some partition L : X → [M ]
in to M parts. That is, for certain partitions L, the following
distributions are statistically close:

(L(x), f(x))x∼D ≈ε (L(x), y)x∼D

We think of L as defining subgroups over the domain— for
example, L(x) ∈ {dog, cat, horse. . .}. Then, the above
statistical closeness is essentially equivalent to requiring
that for all subgroups ` ∈ [M ], the conditional distribution
of classifier output on the subgroup—p(f(x)|L(x) = `) —
is close to the true conditional distribution: p(y|L(x) = `).

The crux of our conjecture lies in defining exactly which
subgroups L satisfy this distributional closeness, and quan-
tifying the ε approximation. This is subtle, since it must
depend on almost all parameters of the problem. For exam-
ple, consider a modification to Experiment 1, where we use
a fully-connected network (MLP) instead of a ResNet. An
MLP cannot properly distinguish cats even when it is actu-
ally provided the real CIFAR-10 labels, and so (informally)
it has no hope of behaving differently on cats in the setting
of Experiment 1, where the cats are not labeled explicitly
(See Figure D.2 for results with MLPs). Similarly, if we
train the ResNet with very few samples from the distribu-
tion, the network will be unable to recognize cats. Thus,
the allowable partitions must depend on the classifier family
and the training method, including the number of samples.

We conjecture that allowable partitions are those which can
themselves be learnt to good test performance with an iden-
tical training procedure, but trained with the labels of the
partition L instead of y. To formalize this, we define a dis-
tinguishable feature: a partition of the domain X that is
learnable for a given training procedure. Thus, in Exper-
iment 1, the partition into CIFAR-10 classes would be a
distinguishable feature for ResNets (trained with SGD with
50K or more samples), but not for MLPs. The definition
below depends on the training procedure A, the data distri-
bution D, number of train samples n, and an approximation
parameter ε (which we think of as ε ≈ 0).

Definition 1 ((ε,A,D, n)-Distinguishable Feature). For a
distribution D over X × Y , number of samples n, train-
ing procedure A, and small ε ≥ 0, an (ε,A,D, n)-
distinguishable feature is a partition L : X → [M ] of the
domain X into M parts, such that training a model using
A on n samples labeled by L works to classify L with high
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test accuracy. Precisely, L is a (ε,A,D, n)-distinguishable
feature if:

Pr
S={(xi,L(xi)}x1,...,xn∼D
f←TrainA(S); x∼D

[f(x) = L(x)] ≥ 1− ε

This definition depends only on the marginal distribution
of D on x, and not on the label distribution pD(y|x). To
recap, this definition is meant to capture a labeling of the
domain X that is learnable for a given training procedure A.
It must depend on the architecture used byA and number of
samples n, since more powerful classifiers can distinguish
more features. Note that there could be many distinguish-
able features for a given setting (ε,A,D, n) — including
features not implied by the class label such as the presence
of grass in a CIFAR-10 image. Our main conjecture follows.

Conjecture 1 (Feature Calibration). For all natural dis-
tributions D, number of samples n, interpolating training
proceduresA, and ε ≥ 0, the following distributions are sta-
tistically close for all (ε,A,D, n)-distinguishable features
L:

(L(x), f(x))
f←TrainA(Dn); x,y∼D

≈ε (L(x), y)
x,y∼D

(3)

or equivalently:

(L(x), ŷ)
x,ŷ∼Dte

≈ε (L(x), y)
x,y∼D

(4)

This claims that the TV distance between the LHS and RHS
of Equation (4) is at most ε, where ε is the error of the
distinguishable feature (in Definition 1). We claim that this
holds for all distinguishable features L “automatically” –
we simply train a classifier, without specifying any partic-
ular partition. The formal statements of Definition 1 and
Conjecture 1 may seem somewhat arbitrary, involving many
quantifiers over (ε,A,D, n). However, we believe these
statements are natural: In addition to extensive experimental
evidence in Section 4, we also prove that Conjecture 1 is
formally true as stated for 1-Nearest-Neighbor classifiers in
Theorem 1.

3.3. Feature Calibration for 1-Nearest-Neighbors

Here we prove that the 1-Nearest-Neighbor classifier for-
mally satisfies Conjecture 1, under mild assumptions. Al-
though the classifiers we empirically test are far more com-
plex than 1-Nearest-Neighbors, we view this theorem as
support for our (somewhat involved) formalism of Conjec-
ture 1. Indeed, without Theorem 1 below, it is unclear if
our statement of Conjecture 1 can ever be satisfied by any
classifier, or if it is simply too strong to be true.

This theorem applies generically to a wide class of distri-
butions, with no assumptions on the ambient dimension of

inputs or the underlying metric. The only assumption is a
weak regularity condition: sampling the nearest-neighbor
train point to a random test point should yield (close to) a
uniformly random test point.

Theorem 1. Let D be a distribution over X × Y , and let
n ∈ N be the number of train samples. Assume the following
regularity condition holds: Sampling the nearest-neighbor
train point to a random test point yields (close to) a uni-
formly random test point. That is, suppose that for some
small δ ≥ 0, the distributions: {NNS(x)}S∼Dn

x∼D
≈δ

{x}x∼D. Then, Conjecture 1 holds. That is, for all
(ε,NN,D, n)-distinguishable partitions L, the following
distributions are statistically close:

{(y, L(x))}x,y∼D ≈ε+δ {(NN
(y)
S (x), L(x)}S∼Dn

x,y∼D
(5)

The proof of Theorem 1 is straightforward, and provided
in Appendix E. Proving this conjecture for more complex
models is an important direction for future work.

3.4. Limitations: Natural Distributions

Technically, Conjecture 1 is not fully specified, since it
does not specify exactly which classifiers or distributions
obey the conjecture. We do not claim that all classifiers
and distributions satisfy our conjectures, since it is always
possible to construct pathological examples. Nevertheless,
we claim our conjectures hold in all “natural” settings, which
informally means settings with real data and classifiers that
are actually used in practice.

The problem of understanding what separates “natural distri-
butions” from artificial ones is not unique to our work, and
lies at the hard of deep learning theory. Many theoretical
works handle this by considering simplified distributional
assumptions (e.g. smoothness, well-separatedness, gaus-
sianity), which are mathematically tractable, but untested in
practice (Arora et al., 2019; Li et al., 2019; Allen-Zhu et al.,
2018). In contrast, we do not make untestable mathematical
assumptions. This benefit of realism comes at the cost of
mathematical formalism. We hope that as the theory of deep
learning evolves, we will better understand how to formalize
the notion of “natural” in our conjectures.

4. Experiments: Feature Calibration
We now give empirical evidence for our conjecture in a
variety of settings in machine learning, including neural
networks, kernel machines, and decision trees. While testing
all possible distinguishable features for a given setting is
computationally intractable, we can check if the conjecture
holds for partitions we know to be distinguishable. We begin
by considering the simplest possible distinguishable feature,
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Figure 2. Feature Calibration. (A) Random confusion matrix on CIFAR-10, with a WideResNet28-10 trained to interpolation. Left:
Joint density of labels y and original class L on the train set. Right: Joint density of classifier predictions f(x) and original class L
on the test set. These two joint densities are close, as predicted by Conjecture 1. (B) Constant partition: The CIFAR-10 train set is
class-rebalanced according to the left panel distribution. The center and right panels show that both ResNets and MLPs have the correct
marginal distribution of outputs, even though the MLP has high test error.

and progressively consider more complex ones. Each of
the experimental settings below highlights a different aspect
of interpolating classifiers, which may be of independent
theoretical or practical interest. Selected experiments are
summarized here, with full details and further experiments
in Appendix D.

Constant Partition: Consider the trivially-distinguishable
constant feature: L(x) = 0 everywhere. For this feature,
Conjecture 1 reduces to the statement that the marginal dis-
tribution of class labels for any interpolating classifier is
close to the true marginals p(y). To test this, we construct
a variant of CIFAR-10 with class-imbalance and train clas-
sifiers with varying levels of test errors to interpolation on
it. As shown in Figure 2B, the marginals of the classifier
outputs are close to the true marginals, even for a classifier
that only achieves 37% test error.

Coarse Partition: Consider AlexNet trained on ILSVRC-
2012 ImageNet (Russakovsky et al., 2015), a 1000-class
image classification problem with 116 varieties of dogs.
The network achieves only 56.5% accuracy on the test set.
But it will at least classify most dogs as dogs (with 98.4% ac-
curacy), making L(x) ∈ {dog, not-dog} a distinguishable
feature. Moreover, as predicted by Conjecture 1, the net-
work is calibrated with respect to dogs: 22.4% of all dogs
in ImageNet are Terriers, and indeed the network classifies
20.9% of all dogs as Terriers (though it has 9% error on
which specific dogs it classifies as Terriers). See Appendix
Table 2 for details, and related experiments on ResNets and
kernels in Appendix D.

Class Partition: We now consider settings where the class
labels are themselves distinguishable features (eg: CIFAR-
10 classes are distinguishable by ResNets). Thus, this set-
ting predicts the behavior of interpolating classifiers under
structured label noise. As an example, we generate a ran-
dom spare confusion matrix and apply this to the labels of
CIFAR-10 as shown in Figure 2A. We find that a WideRes-
Net trained to interpolation outputs the same confusion ma-

trix on the test set as well (Figure 2B).
Now, to test that this phenomenon is indeed robust to the
level of noise, we mislabel class 0→ 1 with probability p in
the CIFAR-10 train set for varying levels of p. We then ob-
serve p̂, the fraction of samples mislabeled by this network
from 0→ 1 in the test set (Figure 3A shows p versus p̂). The
Bayes optimal classifier for this distribution behaves as a
step function (in red), and a classifier that obeys Conjecture
1 exactly would follow the diagonal (in green). The actual
experiment (in blue) is close to the behavior predicted by
Conjecture 1. This experiment shows a contrast with classi-
cal learning theory. While most existing theory focuses on
whether classifiers converge to the Bayes optimal solution,
we show that interpolating classifiers behave “optimally” in
a different sense: they match the distribution of their train
set. We discuss this more formally in Section 5. Appendix
D.4 includes experiments for more distributions and other
classifiers such as Decisions Trees.

Multiple features: Conjecture 1 states that the network
should be automatically calibrated for all distinguishable
features, without any explicit labels for them. To do this,
we use the CelebA dataset (Liu et al., 2015), containing
images with many binary attributes per image. (“male”,
“blond hair”, etc). We train a ResNet-50 to classify one
of the hard attributes (accuracy 80%) and confirm that the
Feature Calibration holds for all the other attributes (Figure
3) that are themselves distinguishable. See Appendix D.5
for details.

Quantitative predictions: We now test the quantitative pre-
dictions made by Conjecture 1. This conjecture states that
the TV-distance between the joint distributions (L(x), f(x))
and (L(x), y) is at most ε, where ε is the error of the training
procedure in learning L (see Definition 1). To test this, we
consider binary task similar to Experiment 1 where (Ship,
Plane) are labeled as class 0 and (Cat, Dog) are la-
beled as class 1, with p = 0.3 fraction of cats mislabeled to
class 0. Then, we train a convolutional network to interpola-
tion on this task. To vary the error ε on these distinguishable
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Figure 3. Feature Calibration. (A) CIFAR-10 with p fraction of class 0 → 1 mislabeled on the train set. Plotting observed noise on
classifier outputs vs. applied noise on the train set. (B) Multiple feature calibration on CelebA. (C) TV-distance between (L(x), f(x))
and (L(x), y) for a variant of Experiment 1 with error on the distinguishable partitions (ε). The error was changed by changing the
number of samples n.

features systematically, we train networks with varying num-
ber of train samples. Networks with fewer samples have
larger ε since they are worse at classifying the distinguish-
able features of (Ship,Plane,Cat,Dog). Then, we
use the same setup to train networks on the binary task
and measure the TV-distance between (L(x), f(x)) and
(L(x), y) in this task. The results are shown in Figure 3C.
As predicted, the TV distance on the binary task is upper
bounded by ε error on the 4-way classification task.

Note about Proper Scoring Rules: If the loss function
used in training is a strictly-proper scoring rule such as
cross-entropy, then we may expect that in the limit of a
large-capacity network and infinite data, training on samples
{(xi, yi)} will yield a good density estimate of p(y|x) at
the softmax layer. However, this is not what is happening in
our experiments: First, our experiments consider the hard-
decisions, not the softmax outputs. Second, we observe
Conjecture 1 even in settings without proper scoring rules
(kernel SVM and decision trees).

5. Distributional Generalization
In order to relate our results to the classical theory of gener-
alization, we now propose a formal notion of “Distributional
Generalization”, which subsumes both Feature Calibration
and classical generalization. In fact, we will also give pre-
liminary evidence that this new notion can apply even for
non-interpolating methods, unlike Feature Calibration.

A trained model f obeys classical generalization (with re-
spect to test error) if its error on the train set is close to its
error on the test distribution. We first rewrite this using our
definitions below.

Classical Generalization (informal): Let f be a trained

classifier. Then f generalizes if:

E
x∼TrainSet
ŷ←f(x)

[1{ŷ 6= y(x)}] ≈ E
x∼TestSet
ŷ←f(x)

[1{ŷ 6= y(x)}] (6)

Above, y(x) is the true class of x and ŷ is the predicted
class. The LHS of Equation 6 is the train error of f , and
the RHS is the test error. Using our definitions of Dtr,Dte

from Section 3.1, and defining Terr(x, ŷ) := 1{ŷ 6= y(x)},
we can write Equation 6 equivalently:

E
x,ŷ∼Dtr

[Terr(x, ŷ)] ≈ E
x,ŷ∼Dte

[Terr(x, ŷ)] (7)

That is, classical generalization states that a certain function
(Terr) has similar expectations on both the Train Distribu-
tion Dtr and Test Distribution Dte. We can now introduce
Distributional Generalization, which is a property of trained
classifiers. It is parameterized by a set of bounded functions
(“tests”): T ⊆ {T : X × Y → [0, 1]}.

Distributional Generalization: Let f be a trained clas-
sifier. Then f satisfies Distributional Generalization with
respect to tests T if:

∀T ∈ T : E
x,ŷ∼Dtr

[T (x, ŷ)] ≈ E
x,ŷ∼Dte

[T (x, ŷ)] (8)

or equivalently: Dtr ≈T Dte.

This states that the train and test distribution have similar
expectations for all functions in the family T . For the
singleton set T = {Terr}, this is equivalent to classical
generalization, but it may hold for much larger sets T .

This definition of Distributional Generalization, like the def-
inition of classical generalization, is just defining an object—
not stating when or how it is satisfied. Feature Calibration
turns this into a concrete conjecture, by proposing exactly
how Distributional Generalization applies in a given setting.
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5.1. Feature Calibration as Distributional
Generalization

Here we show that our Feature Calibration Conjecture is a
special case of Distributional Generalization, for a certain
family of tests T . Informally, for a given setting, the family
T is all tests which take input (x, y), but only depend on
x via a distinguishable feature (Definition 1). For exam-
ple, a test of the form T (x, y) = g(L(x), y) where L is a
distinguishable feature, and g is arbitrary. Formally, for a
given problem setting, suppose L is the set of (ε,A,D, n)-
distinguishable features. Then Conjecture 1 states that
∀L ∈ L : (L(x), f(x)) ≈ε (L(x), y). This is equivalent to
the statement

Dte ≈Tε D (9)

where T is the set of functions T := {T : T (x, y) =
g(L(x), y), L ∈ L, g : X × Y → [0, 1]}. For interpo-
lating classifiers, we have D ≡ Dtr, and so Equation (9)
is equivalent to Dte ≈Tε Dtr, which is a statement of Dis-
tributional Generalization. Since any classifier family will
contain a large number of distinguishable features, the set
L may be very large. Hence, the distributions Dtr and Dte

can be thought of as being close as distributions.

5.2. Beyond Interpolating Methods

The previous sections have focused on interpolating classi-
fiers, which fit their train sets exactly. Here we informally
discuss how to extend our results beyond interpolating meth-
ods. We stress that the discussion in this section is not as
precise as in previous sections, and is only meant to suggest
that our abstraction of Distributional Generalization can be
useful in other settings.

For non-interpolating classifiers, we may still expect that
they behave similarly on their test and train sets – that is,
Dte ≈T Dtr for some family of tests T . For example, the
following is a possible generalization of Feature Calibration
to non-interpolating methods.

Conjecture 2 (Generalized Feature Calibration, informal).
For trained classifiers f , the following distributions are
statistically close for many partitions L of the domain:

(L(x), ŷ)
x,ŷ∼Dte

≈ (L(x), ŷ)
x,ŷ∼Dtr

(10)

We leave unspecified the exact set of partitions L for which
this holds, since we do not yet understand the appropriate
notion of “distinguishable feature” in this setting. However,
we give experimental evidence suggesting some refinement
of Conjecture 2 is true. In Figure 4 we train Gaussian ker-
nel regression on MNIST, with label noise determined by
a random sparse confusion matrix. We vary the `2 regular-
ization, and plot the confusion matrix of predictions on the

Figure 4. Distributional Generalization for Kernel Ridge Regres-
sion on MNIST.

train and test sets. With higher regularization, the kernel
no longer interpolates the train set, but the test and train
confusion matrices remain close. That is, regularization
prevents the kernel from fitting the noise on both the train
and test sets in a similar way. Full experimental details are
given in Appendix C, including an analogous experiment for
neural networks on CIFAR-10, with early-stopping in place
of regularization (Figure 14). These experiments suggests
that Distributional Generalization is a meaningful notion
even for non-interpolating classifiers.

6. Conclusion
This work initiates the study of a new kind of
generalization— Distributional Generalization— which con-
siders the entire input-output behavior of classifiers, instead
of just their test error. We presented both new empirical
behaviors, and new formal conjectures which characterize
these behaviors. Roughly, our conjecture states that the out-
puts of interpolating classifiers on the test set are “close in
distribution” to their outputs on the train set. These results
build a deeper understanding of models used in practice,
and also guide us towards theories of overparameterization,
implicit bias, and interpolation which better capture practice.
We hope our results inspire further work on this important
set of properties across machine learning.
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A. Author Contributions
PN designed the initial neural network experiments which
initiated this study. PN and YB brainstormed the formal-
ization of the experimental observations and PN devised
the final version of the definitions, conjectures, and their
framing as a version of generalization. YB designed the
experiments to stress test the Feature Calibration Conjecture
under various settings and conducted the final experiments
that appear in the Feature Calibration section. PN discov-
ered and investigated the Agreement Property and did the
Student-Teacher section. PN did the kernel and decision tree
experiments, literature review, and nearest-neighbor proofs.
Both authors wrote the paper.

B. Full Related Work
Our work is inspired by the broader study of interpolating
and overparameterized methods in machine learning; a par-
tial list of works in this theme includes Zhang et al. (2016);
Belkin et al. (2018a;b; 2019); Liang & Rakhlin (2018);
Nakkiran et al. (2020); Mei & Montanari (2019); Schapire
et al. (1998); Breiman (1995); Ghorbani et al. (2019); Hastie
et al. (2019); Bartlett et al. (2020); Advani & Saxe (2017);
Geiger et al. (2019); Gerace et al. (2020); Chizat & Bach
(2020); Goldt et al. (2019); Arora et al. (2019); Allen-Zhu
et al. (2019); Neyshabur et al. (2018); Dziugaite & Roy
(2017); Muthukumar et al. (2020); Neal et al. (2018).

Interpolating Methods. Many of the best-performing tech-
niques on high-dimensional tasks are interpolating methods,
which fit their train samples to 0 train error. This includes
neural-networks and kernels on images (He et al., 2016;
Shankar et al., 2020), and random forests on tabular data
(Fernández-Delgado et al., 2014). Interpolating methods
have been extensively studied both recently and in the past,
since we do not theoretically understand their practical suc-
cess (Schapire et al., 1998; Schapire, 1999; Breiman, 1995;
Zhang et al., 2016; Belkin et al., 2018a;b; 2019; Liang &
Rakhlin, 2018; Mei & Montanari, 2019; Hastie et al., 2019;
Nakkiran et al., 2020). In particular, much of the classical
work in statistical learning theory (uniform convergence,
VC-dimension, Rademacher complexity, regularization, sta-
bility) fails to explain the success of interpolating methods
(Zhang et al., 2016; Belkin et al., 2018a;b; Nagarajan &
Kolter, 2019). The few techniques which do apply to inter-
polating methods (e.g. margin theory (Schapire et al., 1998))
remain vacuous on modern neural-networks and kernels.

Decision Trees. In a similar vein to our work, Wyner
et al. (2017); Olson & Wyner (2018) investigate deci-
sion trees, and show that random forests are equivalent
to a Nadaraya–Watson smoother (Nadaraya, 1964; Wat-
son, 1964) with a certain smoothing kernel. Decision
trees (Breiman et al., 1984) are often intuitively thought
of as “adaptive nearest-neighbors,” since they are explicitly
a spatial-partitioning method (Hastie et al., 2009). Thus, it
may not be surprising that decision trees behave similarly to
1-Nearest-Neighbors. Wyner et al. (2017); Olson & Wyner
(2018) took steps towards characterizing and understand-
ing this behavior – in particular, Olson & Wyner (2018)
defines an equivalent smoothing kernel corresponding to a
random forest, and empirically investigates the quality of
the conditional density estimate. Our work presents a formal
characterization of the quality of this conditional density
estimate (Conjecture 1), which is a novel characterization
even for decision trees, as far as we know.

Kernel Smoothing. The term kernel regression is some-
times used in the literature to refer to kernel smoothers,
such as the Nadaraya–Watson kernel smoother (Nadaraya,
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1964; Watson, 1964). But in this work we use the term
“kernel regression” to refer only to regression in a Reproduc-
ing Kernel Hilbert Space, as described in the experimental
details.

Label Noise. Our conjectures also describe the behavior
of neural networks under label noise, which has been em-
pirically and theoretically studied in the past, though not
formally characterized before (Zhang et al., 2016; Belkin
et al., 2018b; Rolnick et al., 2017; Natarajan et al., 2013;
Thulasidasan et al., 2019; Ziyin et al., 2020; Chatterji &
Long, 2020). Prior works have noticed that vanilla interpo-
lating networks are sensitive to label noise (e.g. Figure 1 in
Zhang et al. (2016), and Belkin et al. (2018b)), and there are
many works on making networks more robust to label noise
via modifications to the training procedure or objective (Rol-
nick et al., 2017; Natarajan et al., 2013; Thulasidasan et al.,
2019; Ziyin et al., 2020). In contrast, we claim this sensitiv-
ity to label noise is not necessarily a problem to be fixed, but
rather a consequence of a stronger property: distributional
generalization.

Conditional Density Estimation. Our density calibra-
tion property is similar to the guarantees of a conditional
density estimator. More specifically, Conjecture 1 states
that an interpolating classifier samples from a distribu-
tion approximating the conditional density of p(y|x) in
a certain sense. Conditional density estimation has been
well-studied in classical nonparametric statistics (e.g. the
Nadaraya–Watson kernel smoother (Nadaraya, 1964; Wat-
son, 1964)). However, these classical methods behave
poorly in high-dimensions, both in theory and in practice.
There are some attempts to extend these classical methods
to modern high-dimentional problems via augmenting esti-
mators with neural networks (e.g. Rothfuss et al. (2019)).
Random forests have also been known to exhibit proper-
ties similar to conditional density estimators. This has been
formalized in various ways, often only with asymptotic guar-
antees (Meinshausen, 2006; Pospisil & Lee, 2018; Athey
et al., 2019).

No prior work that we are aware of attempts to characterize
the quality of the resulting density estimate via testable as-
sumptions, as we do with our formulation of Conjecture 1.
Finally, our motivation is not to design good conditional den-
sity estimators, but rather to study properties of interpolating
classifiers — which we find happen to share properties of
density estimators.

Feature Calibration (Conjecture 1) is also related to the con-
cepts of calibration and multicalibration (Guo et al., 2017;
Niculescu-Mizil & Caruana, 2005; Hébert-Johnson et al.,
2018). In our framework, calibration is implied by Feature
Calibration for a specific set of partitions L (determined by
level sets of the classifier’s confidence). However, we are not
concerned with a specific set of partitions (or “subgroups” in

the algorithmic fairness literature) but we generally aim to
characterize for which partitions Feature Calibration holds.
Moreover, we consider only hard-classification decisions
and not confidences, and we study only standard learning
algorithms which are not given any distinguished set of sub-
groups/partitions in advance. Our notion of distributional
generalization is also related to the notion of “distributional
subgroup overfitting” introduced recently by Yaghini et al.
(2019) to study algorithmic fairness. This can be seen as
studying distributional generalization for a specific family
of tests (determined by distinguished subgroups in the pop-
ulation).

Locality and Manifold Learning. Our intuition for the
behaviors in this work is that they arise due to some form of
“locality” of the trained classifiers, in an appropriate space.
This intuition is present in various forms in the literature,
for example: the so-called called “manifold hypothesis,”
that natural data lie on a low-dimensional manifold (e.g.
Narayanan & Mitter (2010); Sharma & Kaplan (2020)), as
well as works on local stiffness of the loss landscape (Fort
et al., 2019), and works showing that overparameterized
neural networks can learn hidden low-dimensional structure
in high-dimensional settings (Gerace et al., 2020; Bach,
2017; Chizat & Bach, 2020). It is open to more formally
understand connections between our work and the above.

C. Experimental Details
Here we describe general background, and experimental
details common to all sections. Then we provide section-
specific details below.

C.1. Datasets

We consider the image datasets CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009), MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), CelebA (Liu et al.,
2015), and ImageNet (Russakovsky et al., 2015). We nor-
malize images to x ∈ [0, 1]C×W×H .

We also consider tabular datasets from the UCI reposi-
tory (Dua & Graff, 2017). For UCI data, we consider the 121
classification tasks as standardized in Fernández-Delgado
et al. (2014). Some of these tasks have very few examples,
so we restrict to the 92 classification tasks from Fernández-
Delgado et al. (2014) which have at least 200 total examples.

C.2. Models

We consider neural-networks, kernel methods, and decision
trees.
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C.2.1. DECISION TREES

We train interpolating decision trees using a growth
rule from Random Forests (Breiman, 2001; Ho, 1995):
selecting a split based on a random

√
d subset of

d features, splitting based on Gini impurity, and
growing trees until all leafs have a single sample.
This is as implemented by Scikit-learn (Pedregosa
et al., 2011) defaults with RandomForestClassifier
(n_estimators=1, bootstrap=False).

C.2.2. KERNELS

Throughout this work we consider classification via kernel
regression and kernel SVM. For M -class classification via
kernel regression, we follow the methodology in e.g. Rahimi
& Recht (2008); Belkin et al. (2018b); Shankar et al. (2020).
We solve the following convex problem for training:

α∗ := argmin
α∈RN×M

||Kα− y||22 + λαTKα

where Kij = k(xi, xj) is the kernel matrix of the training
points for a kernel function k, y ∈ RN×M is the one-hot
encoding of the train labels, and λ ≥ 0 is the regularization
parameter. The solution can be written

α∗ = (K + λI)−1y

which we solve numerically using SciPy linalg.solve
(Virtanen et al., 2020). We use the explicit form of all
kernels involved. That is, we do not use random-feature
approximations (Rahimi & Recht, 2008), though we expect
they would behave similarly.

The kernel predictions on test points are then given by

gα(x) :=
∑
i∈[N ]

αik(xi, x) (11)

fα(x) := argmax
j∈[M ]

gα(x)j (12)

where g(x) ∈ RM are the kernel regressor outputs, and
g(x) ∈ [M ] is the thresholded classification decision. This
is equivalent to training M separate binary regressors (one
for each label), and taking the argmax for classification. We
usually consider unregularized regression (λ = 0), except
in Section 5.2.

For kernel SVM, we use the implementation provided by
Scikit-learn (Pedregosa et al., 2011) sklearn.svm.SVC
with a precomputed kernel, for inverse-regularization param-
eter C ≥ 0 (larger C corresponds to smaller regularization).

Types of Kernels. We use the following kernel functions
k : Rd × Rd → R≥0.

• Gaussian Kernel (RBF): k(xi, xj) =

exp(− ||xi−xj ||22
2σ̃2 ).

• Laplace Kernel: k(xi, xj) = exp(− ||xi−xj ||2
σ̃ ).

• Myrtle10 Kernel: This is the compositional kernel
introduced by Shankar et al. (2020). We use their exact
kernel for CIFAR-10.

For the Gaussian and Laplace kernels, we parameterize
bandwidth by σ := σ̃/

√
d. We use the following band-

widths, found by cross-validation to maximize the unregu-
larized test accuracy:

• MNIST: σ = 0.15 for RBF kernel.

• Fashion-MNIST: σ = 0.1 for RBF kernel. σ = 1.0 for
Laplace kernel.

• CIFAR-10: Myrtle10 Kernel from Shankar et al.
(2020), and σ = 0.1 for RBF kernel.

C.2.3. NEURAL NETWORKS

We use 4 different neural networks in our experiments. We
use a multi-layer perceptron, and three different Residual
networks.

MLP: We use a Multi-layer perceptron or a fully connected
network with 3 hidden layers with 512 neurons in each layer.
A hidden layer is followed by a BatchNormalization layer
and ReLU activation function.

WideResNet: We use the standard WideResNet-28-10 de-
scribed in Zagoruyko & Komodakis (2016). Our code is
based on this repository.

ResNet50: We use a standard ResNet-50 from the PyTorch
library (Paszke et al., 2017).

ResNet18: We use a modification of ResNet18 (He et al.,
2016) adapted to CIFAR-10 image sizes. Our code is based
on this repository.

For Experiment 1 and Section 4, the hyperparameters used
to train the above networks are given in Table 1.

https://github.com/hysts/pytorch_image_classification/blob/master/pytorch_image_classification/models/cifar/wrn.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
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MLP ResNet18 WideResNet ResNet50
Batchsize 128 128 128 32
Epochs 820 200 200 50

Optimizer Adam
(β1 = 0.9, β2 = 0.999)

SGD +
Momentum (0.9)

SGD +
Momentum (0.9) SGD

Learning rate
(LR) schedule Constant LR = 0.001

Inital LR= 0.05
scale by 0.1 at

epochs (80, 120)

Inital LR= 0.1
scale by 0.2 at

epochs (80, 120, 160)

Initial LR = 0.001,
scale by 0.1

if training loss stagnant
for 2000 gradient steps

Data
Augmentation Random flips + RandomCrop(32, padding=4)

CIFAR-10 Error ∼ 37% ∼ 8% ∼ 4% N/A

Table 1. Hyperparameters used to train the neural networks and their errors on the unmodified CIFAR-10 dataset
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D. Feature Calibration: Appendix
D.1. A guide to reading the plots

All the experiments in support of Conjecture 1 involve vari-
ous quantities which we enumaerate here

1. Inputs x: Each experiment involves inputs from a stan-
dard dataset like CIFAR-10 or MNIST. We use the
standard train/test splits for every dataset.

2. Distinguishable feature L(x): This feature depends
only on input x. We consider various features like the
original classes itself, a superset of classes (as in coarse
partition) or some secondary attributes (like the binary
attributes provided with CelebA)

3. Output labels y: The output label may be some modifi-
cation of the original labels. For instance, by adding
some type of label noise, or a constructed binary task
as in Experiment 1

4. Classifier family F : We consider various types of clas-
sifiers like neural networks trained with gradient based
methods, kernel and decision trees.

In each experiment, we are interested in two joint densities
(y, L(x)), which depends on our dataset and task and is
common across train and test, and (f(x), L(x)) which de-
pends on the interpolating classifiers outputs on the test
set. Since y, L(x) and f(x) are discrete, we will look
at their discrete joint distributions. We sometimes refer
to (y, L(x)) as the train joint density, as at interpolation
(y, L(x)) = (f(x), L(x)) for all training inputs x. We also
refer to (f(x), L(x)) as the test density, as we measure this
only on the test set.

D.2. Experiment 1

Experimental details: We now provide further details for
Experiment 1. We first construct a dataset from CIFAR-10
that obeys the joint density (y, L(x)) shown in Figure 1 left
panel. We then train a WideResNet-28-10 (WRN-28-10)
on this modified dataset to zero training error. The network
is trained with the hyperparameters described in Table 1.
We then observe the joint density (f(x), L(x)) on the test
images and find that the two joint densities are close as
shown in Figure 5.

We now consider a modification of this experiment as fol-
lows:

Experiment 2. Consider the following distribution over
images x and binary labels y. Sample x as a uniformly
random CIFAR-10 image, and sample the label as p(y|x) =
Bernoulli(CIFAR Class(x)/10). That is, if the CIFAR-
10 class of x is k ∈ {0, 1, . . . 9}, then the label is 1 with

Figure 5. Distributional Generalization in Experiment 2. Joint
densities of the distributions involved in Experiment 2. The
top panel shows the joint density of labels on the train
set: (CIFAR Class(x), y). The bottom panels shows
the joint density of classifier predictions on the test set:
(CIFAR Class(x), f(x)). Distributional Generalization claims
that these two joint densities are close.

probability (k/10) and 0 otherwise. Figure 5 shows this
joint distribution of (x, y). As before, train a WideResNet to
0 training error on this distribution.

In this experiment too, we observe that the train and test
joint densities are close as shown in Figure 5.

Now, we repeat the same experiment, but with an MLP
instead of WRN-28-10. The training procedure is described
in Table 1. This MLP has an error on 37% on the original
CIFAR-10 dataset.

Figure 6. Joint density of (y,Class(x)), top, and (f(x),Class(x)),
bottom, for test samples (x, y) from Experiment 2 for an MLP.

Since this MLP has poor accuracy on the original CIFAR-
10 classification task, it does not form a distinguishable
partition for it. As a result, the train and test joint densities
(Figure 6) do not match as well as they did for WRN-28-10.

D.3. Constant Partition

Conjecture 1 states that the marginal distribution of class
labels for any interpolating classifier f(x) is close to the
true marginals p(y). To show this, we construct a dataset
based on CIFAR-10 that has class-imbalance. For class
k ∈ {0...9}, sample (k + 1)× 500 images from that class.
This will give us a dataset where classes will have marginal
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distribution p(y = `) ∝ `+ 1 for classes ` ∈ [10], as shown
in Figure 2. We do this both for the training set and the test
set, to keep the distribution D fixed.

We then train a variety of classifiers (MLPs, RBF Kernel,
ResNets) to interpolation on this dataset, which have varying
levels of test errors (9-41%). The class balance of classifier
outputs on the (rebalanced) test set

D.4. Class Partition

D.4.1. NEURAL NETWORKS AND CIFAR-10

We now describe details for the experiments in Figures
2A and 3A. A WRN-28-10 achieves an error of 4% on
CIFAR-10. Hence, the original labels in CIFAR-10 form
a distinguishable partition for this dataset. To demonstrate
that Conjecture 1 holds, we consider different structured
label noise on the CIFAR-10 dataset. To do so, we apply
a variety of confusion matrices to the data. That is, for a
confusion matrix C : 10× 10 matrix, the element cij gives
the joint density that a randomly sampled image had original
label j, but is flipped to class i. For no noise, this would be
an identity matrix.

We begin by a simple confusion matrix where we flip only
one class 0 → 1 with varying probability p. Figure 7A
shows one such confusion matrix for p = 0.4. We then train
a WideResNet-28-10 to zero train error on this dataset. We
use the hyperparameters described in C.2 We find that the
classifier outputs on the test set closely track the confusion
matrix that was applied to the distribution. Figure 7C shows
that this is independent of the value of p and continues to
hold for p = [0, 1].

Figure 7. Feature Calibration with original classes on CIFAR-
10: We train a WRN-28-10 on the CIFAR-10 dataset where we
mislabel class 0→ 1 with probability p. (A): Joint density of the
distinguishable features L (the original CIFAR-10 class) and the
classification task labels y on the train set for noise probability
p = 0.4. (B): Joint density of the original CIFAR-10 classes L
and the network outputs f(x) on the test set. (C): Observed noise
probability in the network outputs on the test set (the (1, 0) entry
of the matrix in B) for varying noise probabilities p

To show that this is not dependent on the particular class
used, we also show that the same holds for a random con-
fusion matrix. We generate a sparse confusion matrix as
follows. We set the diagonal to 0.5. Then, for every class

j, we pick any two random classes for and set them to 0.2
and 0.3. We train a WRN-28-10 on it and report the test
confusion matrix. The resulting train and test densities are
shown in Figure 2A. As expected, the train and test confu-
sion matrices are close, and share the same sparsity pattern.

D.4.2. DECISION TREES

Figure 8 shows a version of this experiment for decision
trees on the molecular biology UCI task. The molecular
biology task is a 3-way classification problem: to classify
the type of a DNA splice junction (donor, acceptor, or nei-
ther), given the sequence of DNA (60 bases) surrounding
the junction. We add varying amounts of label noise that
flips class 2 to class 1 with a certain probability, and we
observe that interpolating decision trees reproduce this same
structured label noise on the test set.

Similar results hold for decision trees; here we show experi-
ments on two UCI tasks: wine and mushroom.

The wine task is a 3-way classification problem: to identify
the cultivar of a given wine (out of 3 cultivars), given 13
physical attributes describing the wine. Figure 9 shows an
analogous experiment with label noise taking class 1 to class
2.

The mushroom task is a 2-way classification problem: to
classify the type of edibility of a mushroom (edible vs poi-
sonous) given 22 physical attributes (e.g. stalk color, odor,
etc). Figure 10 shows an analogous experiment with label
noise flipping class 0 to class 1.

Figure 8. Feature Calibration for Decision trees on UCI
(molecular biology). We add label noise that takes class 2 to
class 1 with probability p ∈ [0, 0.5]. The top row shows the con-
fusion matrix of the true class L(x) vs. the label y on the train
set, for varying levels of noise p. The bottom row shows the cor-
responding confusion matrices of the classifier predictions f(x)
on the test set, which closely matches the train set, as predicted by
Conjecture 1.

D.5. Multiple Features

Conjecture 1 states that the network should be automatically
calibrated for all distinguishable features, without any ex-
plicit labels for them. To verify this, we use the CelebA
dataset (Liu et al., 2015), containing images with various
labelled binary attributes per-image (“male”, “blond hair”,
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Figure 9. Decision trees on UCI (wine). We add label noise that
takes class 1 to class 2 with probability p ∈ [0, 0.5]. Each column
shows the test and train confusion matrices for a given p. Note
that this decision trees achieve high accuracy on this task with no
label noise (leftmost column). We plot the empirical joint density
of the train set, and not the population joint density of the train
distribution, and thus the top row exhibits some statistical error
due to small-sample effects.

Figure 10. Decision trees on UCI (mushroom). We add label noise
that takes class 0 to class 1 with probability p ∈ [0, 0.5]. Each
column shows the test and train confusion matrices for a given
p. Note that this decision trees achieve high accuracy on this task
with no label noise (leftmost column).

etc). Some of these attributes form a distinguishable feature
for ResNet50 as they are learnable to high accuracy (Jahan-
dideh et al., 2018). We pick one of hard attributes as the
target classification task. We train a ResNet-50 to predict
the attribute {Attractive, Not Attractive}. We choose this
attribute because a ResNet-50 performs poorly on this task
(test error ∼ 20%) and has good class balance. We choose
an attribute with poor generalization because the conjecture
would hold trivially for if the network generalizes well. We
initialize the network with a pretrained ResNet-50 from the
PyTorch library (Paszke et al., 2017) and use the hyperpa-
rameters described in Section C.2 to train on this attribute.
We then check the train/test joint density with various other
attributes like Male, Wearing Lipstick etc. Note that the net-
work is not given any label information for these additional
attributes, but is calibrated with respect to them. That is, the
network says ∼ 30% of images that have ’heavy makeup’
will be classified as ’Attractive’, even if the network makes
mistakes on which particular inputs it chooses to do so. In
this setting, the label distribution is deterministic, and not
directly dependent on the distinguishable features, unlike
the experiments considered before. Yet, as we see in Fig-
ure 11, the classifier outputs are correctly calibrated for

Figure 11. Feature Calibration for multiple features on
CelebA: We train a ResNet-50 to perform binary classification
task on the CelebA dataset. The top row shows the joint distribu-
tion of this task label with various other attributes in the dataset.
The bottom row shows the same joint distribution for the ResNet-
50 outputs on the test set. Note that the network was not given any
explicit inputs about these attributes during training.

each attribute. Loosely, this can be viewed as the network
performing 1NN classification in a metric space that is well
separated for each of these distinguishable features.

D.6. Coarse Partition

We now consider cases where the original classes do not
form a distinguishable partition for the classifier in consider-
ation. That is, the classifier is not powerful enough to obtain
low error on the original dataset, but can perform well on a
coarser division of the classes.

To verify this, we consider a division of the CIFAR-10
classes into Objects {airplane, automobile, ship, truck}
vs Animals {cat, deer, dog, frog}. An MLP trained on
this problem has low error (∼ 8%), but the same network
performs poorly on the full dataset (∼ 37% error). Hence,
Object vs Animals forms a distinguishable partition with
MLPs. In Figure 12a, we show the results of training an
MLP on the original CIFAR-10 classes. We see that the
network mostly classifies objects as objects and animals as
animals, even when it might mislabel a dog for a cat.

We perform a similar experiment for the RBF kernel on
Fashion-MNIST, with partition {clothing, shoe, bag}, in
Figure 12b.

ImageNet experiment. In Table 2 we provide results of
the terrier experiment in the body, for various ImageNet
classifiers. We use publicly available pretrained ImageNet
models from this repository, and use their evaluations on
the ImageNet test set.

D.7. Discussion: Proper Scoring Rules

Here we distinguish the density-estimation of Conjecture 1
from another setting where density estimation occurs. If

https://github.com/Cadene/pretrained-models.pytorch
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Model AlexNet ResNet18 ResNet50 BagNet8 BagNet32

ImageNet Accuracy 0.565 0.698 0.761 0.464 0.667
Accuracy on dogs 0.588 0.729 0.793 0.462 0.701
Accuracy on terriers 0.572 0.704 0.775 0.421 0.659
Accuracy for binary {dog/not-dog} 0.984 0.993 0.996 0.972 0.992
Accuracy on {terrier/not-terrier} among dogs 0.913 0.955 0.969 0.876 0.944

Fraction of real-terriers among dogs 0.224 0.224 0.224 0.224 0.224
Fraction of predicted-terriers among dogs 0.209 0.222 0.229 0.192 0.215

Table 2. ImageNet classifiers are calibrated with respect to dogs: All classifiers predict terrier for roughly ∼ 22% of all dogs (last row),
though they may mistake which specific dogs are terriers.

(a) CIFAR10 + MLP (b) Fashion-MNIST + RBF

Figure 12. Coarse partitions as distinguishable features: We consider a setting where the original classes are not distinguishable, but a
superset of the classes are distinguishable.
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`(p̂, y) is a strictly-proper scoring rule3 on predicted distri-
bution p̂ ∈ ∆(Y) and sample y ∈ Y , then the population
minimizer of `(F (x), y) is exactly the conditional density
F (x) = p(y|x). That is,

p(y|x) = argmin
F :X→∆(Y)

E
(x,y)∼p

[`(F (x), y)]

This suggests that in the limit of large-capacity network and
very large data (to approximate population quantities), train-
ing neural nets with cross-entropy loss on samples (x, y)
will yield a good density estimate of p(y|x) at the softmax
layer. However, this is not what is happening in our experi-
ments. First, our experiments consider the hard-thresholded
classifier, i.e. the argmax of the softmax layer. If the softmax
layer itself was close to p(y|x), then the classifier itself will
be close to argmaxy p(y|x) – that is, close to the optimal
classifier. However, this is not the case (since the classifiers
make significant errors). Second, we observe Conjecture 1
even in settings where we train with non-proper scoring
rules (e.g. kernel regression, where the classifier does not
output a probability).

E. Nearest-Neighbor Proofs
E.1. Feature Calibration Property

Proof of Theorem 1. Recall that L being an (ε,NN,D, n)-
distinguishable partition means that nearest-neighbors
works to classify L(x) from x:

Pr
{xi,yi}∼Dn

S={(xi,L(xi)}
x,y∼D

[NN
(y)
S (x) = L(x)] ≥ 1− ε (13)

Now, we have

{(NN
(y)
S (x), L(x))}S∼Dn

x,y∼D
≡ {(ŷi, L(x))} S∼Dn

x̂i,ŷi←NNS(x)
x,y∼D

(14)

≈ε {(ŷi, L(x̂i))} S∼Dn

x̂i,ŷi←NNS(x)
x,y∼D

(15)

≈δ {(ŷi, L(x̂i))}x̂i,ŷi∼D
(16)

Line (15) is by distinguishability, since Pr[L(x) 6=
L(x̂i)] ≤ ε. And Line (16) is by the regularity condi-
tion.

F. Non-interpolating Classifiers: Appendix
Here we give an additional example of distributional gener-
alization: in kernel SVM (as opposed to kernel regression,
in the main text).

3See (Gneiting & Raftery, 2007) for a survey of proper scoring
rules.
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Figure 13. Distributional Generalization. Train (left) and test (right) confusion matrices for kernel SVM on MNIST with random sparse
label noise. Each row corrosponds to one value of inverse-regularization parameter C. All rows are trained on the same (noisy) train set.
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Figure 14. Distributional Generalization for WideResNet on CIFAR-10. We apply label noise from a random sparse confusion to the
CIFAR-10 train set. We then train a single WideResNet28-10, and measure its predictions on the train and test sets over increasing train
time (SGD steps). The top row shows the confusion matrix of predictions f(x) vs true labels L(x) on the train set, and the bottom row
shows the corresponding confusion matrix on the test set. As the network is trained for longer, it fits more of the noise on the train set, and
this behavior is mirrored almost identically on the test set.


